• 제목/요약/키워드: dynamic damping ratios

검색결과 168건 처리시간 0.024초

동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석 (Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties)

  • 이진학;박진순;한상훈;이광수
    • 대한토목학회논문집
    • /
    • 제32권2A호
    • /
    • pp.97-108
    • /
    • 2012
  • 재킷식 해양구조물인 울돌목 시험조류발전소에 대하여 장기 모니터링을 통하여 구조물 동적 응답을 계측하였으며, 계측된 동적 응답 중 저주파수 거동을 정밀하게 계측할 수 있는 동적 경사 응답을 이용하여 구조물의 고유주파수 및 모드감쇠비를 추정하고, 이와 같은 동특성이 조위와 조류 유속 등 외부 환경에 의하여 어떤 영향을 받는지를 분석하였다. 제한된 수의 응답 계측 자료로부터 구조물의 고유주파수 및 모드감쇠비를 정밀하게 추정하기 위하여 개선된 실험모드해석 방법인 LS-FDD 방법을 제안하였으며, 제안된 실험모드해석 기법을 이용하여 울돌목 시험조류발전소의 동적 경사 응답을 분석하여, 주요 3차모드의 고유주파수와 모드감쇠비를 정밀하게 추정하였다. 추정된 동특성은 시간에 따라 크게 변동하며, 이러한 변동은 조석의 영향을 지배적으로 받고 있음을 시계열 분석 및 주파수 분석을 통하여 알 수 있었다. 또한 울돌목 시험조류발전소에서 관측한 일정 기간의 조위 및 조류 유속 자료를 이용하여, 구조물의 동특성과 조류 자료 사이의 상관관계를 분석하였고, 조위 및 유속 자료만으로 구조물의 동특성을 예측할 수 있는 모델식을 결정하였다.

형상변경에 따른 구조물 감쇠특성 및 소음 특성 예측기술 연구 (Study for the prediction of damping and sound radiation characteristics due to structural shape changes)

  • 유지우;서진관;이상우;박정원;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.332-335
    • /
    • 2014
  • Applying damping sheets or dampers (dynamic or mass) can reduce noise from vibrating structure as well as vibration. However, this approach requires increases of weight and cost. If one can reduce structural noise by only modifying the structural shape, which would be the best practice. It is natural that the noise characteristics change when the structure is modified, but the recent experiment on the sunroof frame showed that the modification of the frame beads results in change of the structural damping, so that the corresponding noise can be reduced. In this context, the reason why the structural damping and the related noise upon an impact excitation is changed is theoretically investigated. The change of dynamic and damping characteristics of the strip panels when their shapes are modified is experimentally found and it is shown that such behaviours can be predicted by computer simulation. Some experimental specimen, mainly strip-type panels, are examined for the numerical verification, and especially damping ratios are investigated.

  • PDF

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

Random vibration-based investigation of required separation gap between adjacent buildings

  • Atefeh Soleymani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.285-297
    • /
    • 2024
  • Due to the imbalanced vibration of the adjacent buildings, the pounding phenomenon occurs as a result of an insufficient gap between them. Providing enough gap between adjacent structures is the most efficient approach to preventing the pounding effect. This paper calculated the required separation gaps between adjacent buildings, including two, four, eight, twelve and twenty stories steel moment-resisting frames, and investigated their related influencing parameters such as time periods, damping ratios, and the number of bays. The linear and nonlinear dynamic time-history analyses under real seismic event records were conducted to calculate the required separation gaps by obtaining relative displacement and velocity functions of two adjacent frames. The results showed that the required separation gap increased when the time periods of adjacent frames were not the same. The resulting separation gaps values of linear and nonlinear analyses were similar only for two and four stories frames. In other frames, the resulting separation gap values of linear analyses surpassed the corresponding nonlinear analyses. Although increasing the damping ratios in adjacent frames causes a decrease in the required separation gaps, the number of bays had no significant effect on them.

Infill wall effects on the dynamic characteristics of RC frame systems via operational modal analysis

  • Komur, Mehmet A.;Kara, Mehmet E.;Deneme, Ibrahim O.
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.121-128
    • /
    • 2020
  • This paper presents an experimental study on the dynamic characteristics of infilled reinforced concrete (RC) frames. A 1/3-scaled, one-bay, three-storey RC frame was produced and tested by using operational modal analysis (OMA). The experiments were performed on five specimens: one reference frame with no infill walls and four frames with infill walls. The RC frame systems included infill walls made of hollow clay brick, which were constructed in four different patterns. The dynamic characteristics of the patterns, including the frequency, mode shapes and damping ratios in the in-plane direction, were obtained by 6 accelerometers. Twenty-minute records under ambient vibration were collected for each model, and the dynamic characteristics were determined using the ambient vibration testing and modal identification software (ARTeMIS). The experimental studies showed that the infill walls significantly affected the frequency value, rigidity and damping ratio of the RC frame system.

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

사장교 케이블의 동특성 추정을 위한 케이블 가진 로봇의 개발 (Development of Cable Exciting Robot for Estimating Dynamic Properties of Stay Cables)

  • 이종재;김재민;안상섭;최준성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2007
  • It is necessary to estimate the dynamic characteristics of stay cables ie., the natural frequencies and the damping ratios of the stay cables to design cable damper for appropriate mitigation of cable vibrations and/or to estimate the tension of cables in service. In this study, a cable exciting robot for evaluating dynamic characteristics of stay cables has been developed, and the feasibility of the developed system has been demonstrated through a field test on the stay cable installed at the test yard of Highway and Transportation Technology Institute (HTTI). The dynamic characteristics of the stay cable were estimated based on acceleration data as well as displacement measured by digital image processing technique.

  • PDF

감쇠 요소를 포함하는 불균일 연속 보 구조물을 위한 엄밀한 모드 해석 방법 (A Method for Determining Exact Modal Parameters of Non-Uniform, Continuous Beam Structures with Damping Elements)

  • 홍성욱;김종욱;박종혁
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.202-211
    • /
    • 1998
  • The present paper proposes a modal analysis procedure to obtain exact modal parameters (natural frequencies, damping ratios, eigenvectors) for general, non-uniform beam-like structures. The proposed method includes a derivation of the system dynamic matrix for a Timoshenko beam element. The proposed method provides not only exact modal parameters but also exact frequency response functions (FRFs) for general beam structures. A time domain analysis method is also proposed. Two examples are provided for validating and illustrating the proposed method. The first numerical example compares the proposed method with FEM. The second example deals with a non-uniform beam structure supported in joints with damping property. The numerical study proves that the proposed method is useful for the dynamic analysis of continuous systems consisting of beam-like structures.

  • PDF

다단계 긴장 PSC 거더 철도교량의 고유진동수 및 감쇠비 평가를 위한 동적실험 (Dynamic Experiments of the Incrementally Prestressed Concrete Girder Railway Bridge for Evaluation of Natural Frequencies and Damping Ratios)

  • 김성일;조재열;여인호;이희업;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.98-101
    • /
    • 2006
  • As an alternative of conventional prestressed concrete (PSC) girders, various types of PSC girders are being developed and applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to design concept, these new types of PSC girders have considerable advantages to reduce their self-weight and make spans longer. However, dynamic interaction between bridge superstructures and passing trains would be sometimes one of critical issues in these more flexible railway bridges. Therefore, it is very important to evaluate modal parameters of newly designed bridges before conducting dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage.

  • PDF