• Title/Summary/Keyword: dynamic contact angle

Search Result 153, Processing Time 0.033 seconds

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Analysis of Contact Singular Stresses with Relief Notch by Using Dynamic Photoelasticity(II) (동적 광탄성실험에 의한 응력이완 노치부근에서의 접촉특이응력 해석 (2))

  • Lee, Eok-Seop;Hwang, Si-Won;Nah, Gyeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2097-2107
    • /
    • 1996
  • The dynamic photoelastic technique had been utilized to investigate the possibillity of relieving the large local singular stresses induced at the corner of a right- angle- indenter. The indenter compressed a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effects of the geometric changes of the indenter in terms of the diameter (d) and the location (1) of the stress relieving notch on the behavior of the dynamic contact stresses were investigated. The influence of stress relieving notches positioned along the edge of the semi-infinite body on the dynamic contact stresses were also studied by changing the diameter (D) and the location (L) of the notch. A multi-speak-high speed camera with twelve sparks were used to take photographs of full field dynamic isochromatic fringe patterns. The contact singular stresses were found to be released significantly by the stress relief notches both along the indenter and the edge of the semi-infinite body. The optimal position and geometry of the stress relieving notches were obtained with the aid of limited experimental results.

Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication (축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

Surface Properties of Unsaturated Polyester Resin/Siloxane-ester Copolymer Blends (불포화폴리에스테르 수지/실록산-에스테르 공중합체 블렌드의 표면특성)

  • Chang, Young-Wook;Cheong, Yongjoo;Kim, Dongkook;Jung, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.93-97
    • /
    • 1999
  • In order to lower the surface energy of unsaturated polyester(UPE) resin, small amount of siloxane-ester copolymers were incorporated. The copolymers were synthesized by a condensation polymerization using ethylene glycol and hydroxy termintated polydimethylsiloxane as diols and maleic anhydride and phthalic anhydride as dibasic acids. The modified UPE resin surface was characterized by dynamic contact angle (DCA), peel strength measurements of pressure sensitive adhesives and X-ray photoelectron spectroscopy(ESCA). As the copolymer content in the blend and PDMS content in the copolymer are increased, both advancing and receding contact angles against water are increased. The strength required to peel-off the pressure sensitive adhesive tape from the modified UPE resin decreased dramatically with the addition of the copolymer. ESCA results indicated that polydimethylsiloxane segments are predominated at the outer surface of the modified UPE resin.

  • PDF

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Interfacial Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites Using Micromechanical Test and Nondestructive Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp 섬유 강화 에폭시 복합재료의 계명 물성 평가)

  • Son, Tran Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • The surface energies and acid-base interaction between the untreated and treated Jute or Hemp fibers and different matrix compositions of polypropylene-maleic anhydride polypropylene copolymers (PP-MAPP) were investigated using dynamic contact angle measurement. The contribution of the acid-base property into the interfacial adhesion of the natural fibers/matrix systems were characterized by calculating the work adhesion coming from the acid-base interaction. On the other hand, microfailure mechanism of both single Jute and Hemp fiber bundles were investigated using the combination of single fiber tensile test and acoustic emission. Distinctly different micro failure modes of the different natural fiber/polypropylene systems wet ε observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Fatigue Life Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로수명 평가)

  • Um, Ju-Hwan;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.169-173
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue life evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable far fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation far the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type, And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%) more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective fur ensure against fatigue risks.

Fatigue Behavior Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로거동 평가)

  • Song, Sun-Ok;Eom, Mac;Yang, Shin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.447-453
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue behavior evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable for fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation for the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type. And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%)more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective for ensure against fatigue risks.

  • PDF