• Title/Summary/Keyword: dynamic compliance method

Search Result 70, Processing Time 0.028 seconds

Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm (유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계)

  • Park H.M.;Choi Y.H.;Choi S.J.;Ha S.B.;Kwak C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

Dynamic Characteristics Analysis of a Machine-Tool Spindle System (공작기계 주축계의 진동특성해석에 관한 연구)

  • Kim, Seok-Il;Gwak, Byeong-Man;Lee, Hu-Sang;Jeong, Jae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

Influence of Chucking Conditions on the Chatter Vibration Commencing Point in Turning (선삭에서 공작물 지지조건이 채터진동발생에 미치는 영향)

  • 신승춘
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • With increasing demands on automatic and high-capability manufacturing, the dynamic performance of machine tools becomes more and more important. In this paper, the correlation between dynamic compliance of the cutting system and the commencing point of chatter vibration in turning is checked by impulse excitation method and cutting tests for some cutting system. The correlation between chucking conditions of workpiece and the commencing point of chatter vibration is clarified, and it is proven that there is a mutual relations between them. Chatter vibration commenced at certain level of dynamic compliance of the cutting system regardless of the kind of the system. It shows the possibility of dynamic performance test of a lathe by means of impulse excitation method.

  • PDF

REVIEW OF DYNAMIC LOADING J-R TEST METHOD FOR LEAK BEFORE BREAK OF NUCLEAR PIPING

  • Oh, Young-Jin;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.639-656
    • /
    • 2006
  • In order to apply the leak before break (LBB) concept to nuclear piping systems, the dynamic strain aging effect of low carbon steel materials has to be taken into account, in compliance with the requirements of the Korean Standard Review Guide (KSRG) 3.6.3-1. For this goal, J-R tests are needed for a range of various temperatures and loading rates, including dynamic loading conditions. In the dynamic loading J-R test, the unloading compliance method can not be applied to measure the crack growth and direct current potential drop (DCPD) method; this method also has a problem defining the crack initiation point. The normalization method is known as a very useful method to determine the J-R curve under dynamic loading because it does not need additional equipment or complicated loading sequences such as electric current or unloading. This method was accepted by the American Society for Testing and Materials (ASTM) as a standard test method E1820 A15 in 2001. However, it has not yet been clearly verified yet if the normalization method is sufficiently reliable to be applied to LBB. In this study, the basic background of the J-integral, LBB and dynamic loading J-R test are explained, and the current status for dynamic loading J-R test methods are reviewed from the view point of LBB for nuclear piping. In particular, the theoretical and historical background of the normalization method which has received attention recently, is summarized. Recent studies for this method are introduced and future works are suggested that may improve the reliability of LBB for nuclear piping.

Multiphase Dynamic Optimization of Machine Structures Using Genetic Algorithm (유전자 알고리즘을 이용한 공작기계구조물의 다단계 동적 최적화)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1027-1031
    • /
    • 2000
  • In this paper, multiphase dynamic optimization of machine structure is presented. The final goal is to obtain ( i ) light weight, and ( ii ) rigidity statically and dynamically. The entire optimization process is carried out in two steps. In the first step, multiple optimization problem with two objective functions is treated using Pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second step, maximum receptance is minimized using genetic algorithm. The method is applied to a simplified milling machine.

  • PDF

Center of Mass Compliance Control of Humanoid Using Disturbance Observer (외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어)

  • Park, Gyeongjae;Kim, Myeong-Ju;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

유전 알고리즘 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 최적설계

  • 박현만;최영휴;김동석;하상백;이상직
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.321-321
    • /
    • 2004
  • 본 연구에서는 웨이퍼 단면 연삭기 구조물의 경량화 고강성화 최적설계를 위하여 가변벌점함수 유전 알고리즘을 이용한 다단계 최적설계 방법을 적용하였다. 구조강성 최대화와 중량 최소화라는 상반된 성질의 목적함수를 최적화하기 위하여 강성의 역수 개념인 컴플라이언스(compliance)를 도입하여 목적함수론 최소화시키는 문제로 만들었으며, 가증방법(weighted method)을 이용하여 다목적 함수를 단일 목적함수로 변환시켰다. 부재 단면형상 최적화 단계와 정적설계 최적화 단계, 및 동적 설계 최적화 단계를 순차적으로 수행하는 다단계 최적설계를 방법을 연삭기 구조물의 최적설계에 적용하였다.(중략)

  • PDF

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

Optimal Design of a Near-field Optical Recording Suspension (근접장 광기록용 서스펜션의 최적설계)

  • 조태민;임경화
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.295-302
    • /
    • 2004
  • In this study the optimization of a NFR suspension is performed using finite element method and experimental modal analysis. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, the dual suspension model is designed based on the characteristics of NFR drives. And the parametric study on the sensitivities of compliance modes and tracking stiffness modes is investigated. Finally, the model satisfying static characteristics is selected and shape optimization is performed to improve dynamic characteristics. A prototype of a NFR suspension is made by etching and modal ekperiment in free state is performed. The results of experiment almost agree with those of finite element method.