• 제목/요약/키워드: dynamic column

검색결과 574건 처리시간 0.028초

Brâncuşi Endless Column: A Masterpiece of Art and Engineering

  • Solari, Giovanni
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.193-212
    • /
    • 2013
  • The Endless Column by Constantin Brâncuşi is "the most radical sculpture in the history of classic modernism", "the only one of modern times that can be compared with the great Egyptian, Greek and Renaissance monuments". It "is not only an artistic masterpiece, but also an extraordinary feat of engineering", the greatest example of collaboration between a sculptor and an engineer. This article illustrates the path that led the artist to conception of the column, its planning and construction, the investigations on preservation of the monument and its restoration, the aerodynamic tests in the wind tunnel, the modeling of the wind and the structure in virtue of which the aeroelastic instability, dynamic response and fatigue life were investigated. The conclusions discuss the column's role in the panorama of the great works of modern engineering.

폭발 하중에 대한 FRP 재킷 시스템이 보강된 철근콘크리트 기둥 해석 모델 개발 (Numerical Model of FRP Jacketed RC Column Under Blast Loading Scenario)

  • 신지욱
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.67-79
    • /
    • 2021
  • This paper aims to develop numerical models for seismically-deficient reinforced concrete columns retrofitted using a fiber-reinforced polymer jacketing system under blast loading scenarios. To accomplish the research goal, a coupling model reproducing blast loads was developed and implemented to the column model. The column model was validated with a past experimental study, and the blast responses were compared to the numerical responses produced by past researchers. The validated modeling method was implemented to the non-retrofitted and retrofitted column models to estimate the effectiveness of the retrofit system. Based on the numerical responses, the retrofit system can significantly reduce the peak dynamic responses under a given blast loading scenario.

드릴링 센타용 에폭시-그래나이트재 컬럼의 구조물 특성 연구 (Stuctural Characteristics on Drilling Center Column made of Epoxy-granite Material)

  • 원시태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.158-165
    • /
    • 1995
  • A new fungible materal named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic chatateristics comparing with a conventional cast iron material. The dimensions of new colum structure are adjusted to keep the same stiffness (El value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up. one of which is for the measurement of natural mode and frequency using experimental modal analysis and the other one is for the measurement of vibration amplitude during idling operation of a machine fool. The comparison of maximum, accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measued on the bed motor base and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite materal exhibits a good anti-vibrational property even if it is used under the actual operational environments of machine eool as a practical structural element.

  • PDF

CNC 5축 공작기계의 동응답 저감 해석 (Analysis of the Reduction of the Dynamic Response for the CNC 5 Axles Machining Center)

  • 김기만;최성대
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.83-89
    • /
    • 2010
  • In this paper, the dynamic response of a CNC 5 Axles machining center was analyzed and then controlled passively by using the dynamic absorber. For the simplification of the theoretical approach, the CNC 5 Axles machining center was modeled as a flexible beam(Bed) having a point mass(Column), two discrete systems(a Table-set and a dynamic absorber). Specifically by using the dynamic absorber, the dynamic response of a Table-set which be caused by the vibration of a flexible beam, was reduced down to the infinitesimal level. The optimal design factors of the dynamic absorber were obtained from the minimization of the cost function. It was found that the natural frequencies of a UT-380 machining center be varied due to the movement of the Table-set. In view of the dynamic response of a Table-set, the larger spring stiffness and mass of the dynamic absorber were found to give the greater reduction.

Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) Tests

  • Im, Jooyoung;Tran, An T.P.;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.815-830
    • /
    • 2017
  • Due to numerous environmental concerns in recent years, the search for and the development of sustainable technologies have been pursued. In particular, environmentally friendly methods of soil improvement, such as the potential use of biopolymers, have been researched. Previous studies on the use of biopolymers in soil improvement have shown that they can provide substantial strengthening efficiencies. However, in order to fully understand the applicability of biopolymer treated soils, various properties of these soils such as their dynamic properties must be considered. In this study, the dynamic properties of gel-type biopolymer treated soils were observed through the use of resonant column tests. Gellan gum and Xanthan gums were the target gel-type biopolymers used in this study, and the target soil for this study was jumunjin sand, the standard sand of Korea. Through this study it was demonstrated that biopolymers can be used to enhance the dynamic properties of the soil, and that they offer possibilities of reuse to reduce earthquake related soil failures.

일정체적 단순지지 보-기둥의 동적 최적단면 (Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume)

  • 이병구;박광규;모정만;이상진
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.221-228
    • /
    • 1997
  • 이 논문은 일정체적 단순지지 보-기둥의 동적 최적단면의 결정에 관한 연구이다. 정다각형 단면의 단면깊이가 포물선으로 변화하는 보-기둥에 대한 자유진동을 지배하는 상미분방정식을 유도하였다. 이 미분방정식에는 축하중효과를 고려하였고, Runge-Kutta method와 Regula-Falsi method를 이용하여 미분방정식을 수치적분하고 고유진동수를 산출하였다. 수치해석 결과로부터 얻어진 진동수-단면비 곡선의 임계값들을 분석하여 동적 최적단면을 결정하고 이 결과들을 표 및 그림에 나타내었다.

  • PDF

진동대실험에 의한 동조액체기둥감쇠기의 동적특성 (Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test)

  • 민경원;박은천
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.