• Title/Summary/Keyword: dynamic capacity

Search Result 1,515, Processing Time 0.03 seconds

Fuzzy Relevance-Based Clustering for Routing Performance Enhancement in Wireless Ad-Hoc Networks (무선 애드 혹 네트워크상에서 라우팅 성능 향상을 위한 퍼지 적합도 기반 클러스터링)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2010
  • The clustering is an important mechanism thai provides information for mobile nodes efficiently and improves the processing capacity for routing and the allocation of bandwidth. This paper proposes a clustering scheme based on the fuzzy relevance degree to solve problems such as node distribution found in the dynamic property due to mobility and flat structure and to enhance the routing performance. The proposed scheme uses the fuzzy relevance degree, ${\alpha}$, to select the cluster head for clustering in FSV (Fuzzy State Viewing) structure. The fuzzy relevance ${\alpha}$ plays the role in CH selection that processes the clustering in FSV. The proposed clustering scheme is used to solve problems found in existing 1-hop and 2-hop clustering schemes. NS-2 simulator is used to verify the performance of the proposed scheme by simulation. In the simulation the proposed scheme is compared with schemes such as Lowest-ID, MOBIC, and SCA. The simulation result showed that the proposed scheme has better performance than the other existing compared schemes.

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

Utility Function-Based Scheduling in a Multi-Ship Network with Coordinated Multi-Point Transmission (협력적 다중 선박 네트워크에서 유틸리티 함수 기반의 스케줄링 기법)

  • Kim, Yunsung;Lee, Seong Ro;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.538-545
    • /
    • 2014
  • This paper proposes a coordinated multi-point (CoMP) based dynamic transmission scheme in a downlink multi-ship network, where a central ship selects a ship in order to maximize the utility function. The proposed scheduling scheme dynamically decides to the usage of the coordinated multi transmissions and selects a user to be served for every frame, in order to the utility function on the basis of the throughput and fairness. In particular, the proposed utilify function based scheduling scheme aims to increase the quality of service of ships at the edge of cells. Under the proportional fair scheduling, the simulation results show that the proposed utility function-based scheduling improves the throughput of the ships at the cell edge with the little sacrifice of the system capacity.

Dynamic Load Balancing Scheme Based on Resource Reservation for Migration of Agents in Pure P2P Network Environments (순수 P2P 네트워크 환경에서 에이전트 이주를 위한 자원 예약 기반 동적 부하 균형 기법)

  • Kim, Kyung-In;Kim, Young-jin;Eom, Young-Ik
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.257-266
    • /
    • 2004
  • Mobile agents are defined as processes which can be autonomously delegated or transferred among the hosts in a network in order to perform some computations on behalf of the user and co-operate with other agents. Currently, mobile agents are used in various fields, such as electronic commerce, mobile communication, parallel processing, search of information, recovery, and so on. In pure P2P network environment, if mobile agents that require computing resources rashly migrate to another peers without consideration on the peer's capacity of resources, the peer may have a problem that the performance of the peer is degraded due to lack of resources. To solve this problem, we propose resource reservation based load balancing scheme of using RMA(Resource Management Agent) that monitors workload information of the peers and that decides migrating agents and destination peers. In mobile agent migrating procedure, if the resource of specific peer is already reserved, our resource reservation scheme prevents other mobile agents from allocating the resource.

Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing (오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

A Modified EGEAS Model with Avoided Cost and the Optimization of Generation Expansion Plan (회피비용을 고려한 EGEAS 모형 개발과 전원개발계획의 최적화)

  • 이재관;홍성의
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.117-134
    • /
    • 2000
  • Pubilc utility industries including the electric utility industry are facing a new stream of privatization com-petition with the private sector and deregulation. The necewssity to solve now and in the future power supply and demand problems has been increasing through the sophisticated generation expansion plan(GEP) approach con-sidering not only KEPCo's supply-side resources but also outside resources such as non-utility generation(NUG) demand-side management (DSM). Under the environmental situation in the current electric utility industry a new approach is needed to acquire multiple resources competitively. This study presents the development of a modified electric generation expansion analysis system(EGEAS) model with avoided cost based on the existing EGEAS model which is a dynamic program to develope an optimal generation expansion plan for the electric utility. We are trying to find optimal GEP in Korea's case using our modified model and observe the difference for the level of reliabilities such as the reserve margin(RM) loss of load probability(LOLP) and expected unserved energy percent(EUEP) between the existing EGEAS model and our model. In addition we are trying to calculate avoided cost for NUG resources which is a criterion to evaluate herem and test possibility of connection calculation of avoided cost with GEP implementation using our modified model. The results of our case study are as follows. First we were able to find that the generation expansion plan and reliability measures were largely influenced by capacity size and loading status of NUG resources, Second we were able to find that avoided cost which are criteria to evaluate NUG resources could be calculated by using our modified EGEAS model with avoided cost. We also note that avoided costs were calculated by our model in connection with generation expansion plans.

  • PDF

Development of Integrated Navigation Computer for On/Off Line Processing (실시간/후처리 기법을 고려한 복합 항법 컴퓨터 개발)

  • Jin, Yong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.133-140
    • /
    • 2002
  • In this paper, the structure of integrated navigation computer for experiment is proposed. It is designed for considering the real time processing and data storage capacity. It will be used in missile, aircraft, submarine system and experimental vehicle. The I/O device supports IMU, GPS, odometer, altimeter, depth sensor, inclinometer etc. And the main storage device uses the tape device. That can improve the system stability. Therefore it can be used in a high dynamic or shock environment. The embedded linux is used as an Operating System. For the real time capability, sensor data processing and algorithm processing units are seperated. The time synchronization is referenced by IMU data.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.