• Title/Summary/Keyword: dynamic balancing & tracking

Search Result 8, Processing Time 0.024 seconds

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

Development of Dynamic Balancing Techniques of a Rotor System Using Genetic Algorithm (유전자 알고리즘을 적용한 로터 시스템의 동적 밸런싱 기법 개발)

  • Kwon, Hyuck-Ju;Yu, Young-Hyun;Jung, Sung-Nam;Yun, Chul-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1162-1169
    • /
    • 2010
  • The dynamic balancing of a rotor system is needed to alleviate the imbalances originating from various sources encountered during blade manufacturing processes and environmental factors. This work aims at developing a comprehensive analysis system which consists of cumulative module of test D/B and selection of optimal control parameters. This system can be used for the dynamic balancing of helicopter rotors based on tracking results from the whirl tower test. For simplicity of the analysis, a linear relation is assumed between the balancing input parameters and the blade track responses leading to influence coefficients and thereby the rotor system identification is made. In addition, the balancing parameters of the individual blades are sought using the genetic algorithm and the effectiveness of the proposed method is demonstrated in comparison with the test results.

Sector Based Multiple Camera Collaboration for Active Tracking Applications

  • Hong, Sangjin;Kim, Kyungrog;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1299-1319
    • /
    • 2017
  • This paper presents a scalable multiple camera collaboration strategy for active tracking applications in large areas. The proposed approach is based on distributed mechanism but emulates the master-slave mechanism. The master and slave cameras are not designated but adaptively determined depending on the object dynamic and density distribution. Moreover, the number of cameras emulating the master is not fixed. The collaboration among the cameras utilizes global and local sectors in which the visual correspondences among different cameras are determined. The proposed method combines the local information to construct the global information for emulating the master-slave operations. Based on the global information, the load balancing of active tracking operations is performed to maximize active tracking coverage of the highly dynamic objects. The dynamics of all objects visible in the local camera views are estimated for effective coverage scheduling of the cameras. The active tracking synchronization timing information is chosen to maximize the overall monitoring time for general surveillance operations while minimizing the active tracking miss. The real-time simulation result demonstrates the effectiveness of the proposed method.

Dynamic Speed Control of a Unicycle Robot (외바퀴 로봇의 동적 속도 제어)

  • Han, In-Woo;Hwang, Jong-Myung;Han, Seong-Ik;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation (공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구)

  • Shin, Haeng-Bong;Cha, BO-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

Recurrent Ant Colony Optimization for Optimal Path Convergence in Mobile Ad Hoc Networks

  • Karmel, A;Jayakumar, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3496-3514
    • /
    • 2015
  • One of the challenging tasks in Mobile Ad hoc Network is to discover precise optimal routing solution due to the infrastructure-less dynamic behavior of wireless mobile nodes. Ant Colony Optimization, a swarm Intelligence technique, inspired by the foraging behaviour of ants in colonies was used in the past research works to compute the optimal path. In this paper, we propose a Recurrent Ant Colony Optimization (RECACO) that executes the actual Ant Colony Optimization iteratively based on recurrent value in order to obtain an optimal path convergence. Each iteration involves three steps: Pheromone tracking, Pheromone renewal and Node selection based on the residual energy in the mobile nodes. The novelty of our approach is the inclusion of new pheromone updating strategy in both online step-by-step pheromone renewal mode and online delayed pheromone renewal mode with the use of newly proposed metric named ELD (Energy Load Delay) based on energy, Load balancing and end-to-end delay metrics to measure the performance. RECACO is implemented using network simulator NS2.34. The implementation results show that the proposed algorithm outperforms the existing algorithms like AODV, ACO, LBE-ARAMA in terms of Energy, Delay, Packet Delivery Ratio and Network life time.

헬리콥터 주 로터 훨타워(Whirl Tower) 사례 및 동향

  • Kim, Deok-Gwan;Hong, Dan-Bi;Song, Geun-Ung;Kim, Tae-Ju;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.2
    • /
    • pp.23-32
    • /
    • 2007
  • 헬리콥터 주 로터 시스템은 헬리콥터 전체 성능을 좌우하고, 비행특성을 결정하는 핵심 구성품이다. 주 로터 시스템은 회전하면서 추력 및 조종력을 발생시키기 때문에 동적 밸런싱을 맞추는 것도 중요한 개발단계업무 중에 하나이다. 주 로터 시스템의 개발 과정에서 헬리콥터 비행시제 장착 전에 동적 밸런스 시험, 성능시험, 안정성 시험 등을 포함하는 훨시험(whirl test)을 수행하게 된다. 이 시험 수행을 위해 제작되는 시험장치가 훨타워(whirl tower)이다. 세계 유수 헬리콥터 회사들은 주 로터 훨시험을 위한 설비인 훨타워를 보유하고 있으며, 지속적으로 성능 개량 등을 통해 최신의 기술 및 장비를 적용하여 운영하고 있다. 본 논문에서는 대표적으로 사용되고 있는 해외 헬리콥터 회사들의 훨타워의 사례를 설명하고 설비의 기능을 기술함으로써 기술적 동향에 대하여 살펴보았다. 현재 한국형헬기개발사업(KHP)에서 구축중인 다목적 의 WTTF(whirl tower test facility) 요구조건 및 설계 현황에 대해서도 기술하였다. 당 연구원의 WTTF는 한국형기동헬기(KUH)의 주 로터 훨시험 및 내구성 시험을 위해 구축되고 있다. 본 시험설비는 연구개발용 시험과 양산용 시험을 모두 수행할 수 있도록 다목적으로 개발될 예정이다. 본 설비는 기존 해외 설비와는 차별화되어 다목적 시험을 할 수 있도록 설계가 진행중이며, 2008년12월에 구축 완료 예정이다.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.