• Title/Summary/Keyword: dynamic assessment

Search Result 1,128, Processing Time 0.025 seconds

Objective Image Quality Measurement Model : Focus on Dynamic Range, Noise, Resolution, Color Reproduction, and Preference (객관적인 화질 평가 방법에 관한 연구 : 동적 폭, 노이즈, 해상도, 색재현성, 선호도)

  • Park, Hyung-Ju;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.87-95
    • /
    • 2012
  • We propose that a subjective image quality assessment based on objective image quality factors in order to evaluate objectively preference of consumers. In other words, we define objective image quality factors which are easy to accept by manufacturers and they are composed of subjective image quality assessment questionnaires. Also, portrait image is selected by stimulus in order to persue easiness of evaluation for the general subjects. Throughout a subjective image quality assessment model, we evaluate recognition of image quality by consumers and analyze the effectiveness of correlation in terms of the final image quality preference. Analyzing the relationship between image quality factors, we can figure out the preferable image quality and confirm the positive effects on consumers' recognition of image quality. In the results, there are strong relationship between preference and color reproduction, dynamic range, noise, and resolution respectively. especially, the characteristic of portrait, there is high correlation between color reproduction and preference.

Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators (굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발)

  • Oh, Kwang Seok;Park, Sung Youl;Seo, Ja Ho;Lee, Geun Ho;Yi, Kyong Su
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

The Effect of Berg Balance Scale Evaluating Frequency for Dynamic Balance and Walking Speed of Patients With Stroke (버그 균형 척도 평가 빈도수가 뇌졸중 환자의 동적 균형 및 보행 속도에 미치는 영향)

  • Choi, Hyun-Suk;Kim, Hyun-Jin
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.7-15
    • /
    • 2012
  • Background : The purpose of this study is to determine the effect Berg Balance Scale(BBS) evaluating frequency on the walking speed and dynamic balance control in patient with stroke. Method : sixteen patient with stroke were randomly allocated to an experimental and control group of eight patients each. For the experimental group, we performed both general physical therapy and BBS and general physical therapy only for the control group. The general physical therapy programs for the 2 group were conducted for 1 hour 1 a day, 5 times a week for 4 weeks, and BBS for the experimental group was conducted for 1 time a week. Result : A comparison of the Berg Balance Scale(BBS). Timed Up Go test(TUG) and 10 meter Walking Test(10mWT) score obtained before and after the 4-week treatment revealed statistical significant different(p<.05) for the experimental group. BBS evaluated weekly and the first day and the last day evaluated in both groups after 4 weeks of BBS assessment improved significantly were (p<.05) especially in the assessment group on a weekly basis more improvement was. BBS weekly assessment group and the first day and on the last day, a group evaluation after 4 weeks in both the change of the TUG, 10mWT was significantly improved in the evaluation group(p<.05). Conclusion : 1 time a week of the BBS assessment of with stroke patients BBS, TUG, 10mWT that can help to improve. especially on a weekly basis, more has been improved.

  • PDF

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

DESIGN GUIDELINE FOR THE IMPROVEMENT OF DYNAMIC COMFORT OF A VEHICLE SEAT AND ITS APPLICATION

  • JANG H.-K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.383-390
    • /
    • 2005
  • This study proposes an innovative design guideline to assist the evaluation and improvement of the dynamic comfort of vehicle seating. The existing evaluation method for the comfort of vehicle seating was investigated to broach problems in evaluation. It was found that the currently existing evaluation method employs the resonance frequency of the vibration system composed of the seat and the human body and the maximum vibration transmissibility. This study proposes a design guideline aimed at the enhancement of vibration transmission characteristics above the resonance range, particularly within the range of 10-18 Hz. In order to meet this guideline, a seat was constructed out of foam having a low damping coefficient. It was then installed in a vehicle for a driving test. The driving test confirmed the improvement of the dynamic comfort of the seat. The result of evaluation of the improved seat using the SEAT index, an industry standard widely used to evaluate the dynamic comfort of a seat considering the perceptivity characteristics of the human body, showed that the perceptive vibration transmission had reduced by more than $11\%$. The effect of the modification of seat foam was also verified through a subjective assessment of dynamic comfort of the seats.

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

Identifying Dynamic Characteristics of the Traction Motor Housing For the Noise reduction of the Electric vehicle (전기자동차 소음저감을 위한 구동모터 하우징의 동특성 평가)

  • Park, Jongchan;Park, Seungyong;Cho, Hyun-Kyu;Park, Yunsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.818-823
    • /
    • 2012
  • Assessment of the dynamics properties, like damping, dynamic stiffness and resonance sharpness is essential for the development of a robust system, specifically for the reduction of a traction motor noise. A practical method for identifying dynamic characteristics of a traction motor hosing for an electric vehicle is proposed. Assembling using interference fit of the components of the motor is attributed to the main cause of strong nonlinearity. It is well known that nonlinearity of a structure makes it difficult to assess damping properties or dynamic characteristics of the system. This research presents a practical damping or dynamic stiffness identifying procedures for a nonlinear system according to the boundary condition between assembled components. Based on the simple idea that impact forces of modal tests are highly affected on the condition of the hammer tip, Auto Power Spectrum of the impact forces are used to assess the assembling condition and dynamic characteristics of the system, especially, damping of the system.

  • PDF

Numerical Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 해석적 특성평가)

  • Lee, Jun-Whan;Kim, Tae-Woo;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.305-313
    • /
    • 2007
  • The aim of present paper is to investigate the dynamic strength characteristics of LNG cargo containment system under sloshing impact loads numerically. The dynamic stress transmission mechanism under the impact load was analyzed based on the dynamic Finite Element Analysis. Based on the insights obtained from the numerical studies, the characteristics of internal stress distribution and stress concentration have been reported. The material option including anisotropic material features required for the commercial FEA code application were suggested based on the comparison with the experimental results.

Effect of Auditory Stimulus using White Nosie on Dynamic Balance in Patients with Chronic Stroke during Walking

  • Lim, Hee Sung;Ryu, Jiseon;Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.301-309
    • /
    • 2020
  • Objective: This study aimed to investigate the effect of white noise on dynamic balance in patients with stroke during walking. Method: Nineteen patients with chronic stroke (age: 61.2±9.8 years, height: 164.4±7.4 cm, weight: 61.1±9.4 kg, paretic side (R/L): 11/8, duration: 11.6±4.9 years) were included as study participants. Auditory stimulus used white noise, and all participants listened for 40 minutes mixing six types of natural sounds with random sounds. The dynamic balancing ability was evaluated while all participants walked before and after listening to white noise. The variables were the center of pressure (CoP), the center of mass (CoM), CoP-CoM inclined angle. Results: There is a significant increase in the antero-posterior (A-P) CoP range, A-P inclination angle, and gait speed on the paretic and non-paretic sides following white noise intervention (p<.05). Conclusion: Our findings confirmed the positive effect of using white noise as auditory stimulus through a more objective and quantitative assessment using CoP-CoM inclination angle as an evaluation indicator for assessing dynamic balance in patients with chronic stroke. The A-P and M-L inclination angle can be employed as a useful indicator for evaluating other exercise programs and intervention methods for functional enhancement of patients with chronic stroke in terms of their effects on dynamic balance and effectiveness.

An SDOF model of a four-sided fixed RC wall having an opening for blast response simulation

  • S.H., Sung;H., Ji
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.675-684
    • /
    • 2022
  • The conventional single-degree-of-freedom (SDOF) system is appropriate for dynamic response analysis of paneltype structures without an opening. However, the typical building structures usually have four-sided fixed walls having an opening. Therefore, it may induce a considerable error when dynamic responses are estimated based on the conventional SDOF system, since the SDOF system cannot consider the effect of an opening during the SDOF analysis. For this reason, this study proposes a new SDOF system to consider the effect of an opening by adjusting its load-mass factor. The load-mass factor can be modified based on the assumption that the behaviors of the four-sided fixed wall with an opening is very similar to the behaviors of the same size wall without an opening, when the uniformly distributed blast loaded area is identical. In order to confirm a feasibility of the proposed SDOF system, a series of numerical simulations were carried out for the four-sided fixed reinforced concrete (RC) wall under a blast load. The dynamic responses estimated from the proposed SDOF system and the conventional SDOF system were compared with the dynamic responses evaluated from the finite element (FE) analysis. Especially, for the maximum dynamic responses except for 50% opening case, the proposed SDOF system had about 1.1% to 25.7% normalized errors while the conventional SDOF system had about 4.1% to 49.1% normalized errors.