• Title/Summary/Keyword: dynamic analysis-based

Search Result 4,759, Processing Time 0.037 seconds

Static and Dynamic Weak Point Analysis of Spindle Systems Using Bending Curve (굽힘곡선을 이용한 공작기계 주축의 정적 동적 취약부 규명)

  • 이찬홍;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.188-193
    • /
    • 1998
  • This paper describes static and dynamic weak point analysis of spindle systems to eliminate high concentrated bending point on spindle and improve total stiffness of spindle systems. The weak point analysis is based on the evaluation of bending curves of spindles. For static weak point analysis the bending curve is derived from static deflection curve and for dynamic weak point analysis it is derived from the mode shape curves in consideration of the transfer function at exciting point. The validity of the weak point search methodology is verified by comparison of the static deflection, the natural frequency and the dynamic compliance between the original and the improved spindle.

  • PDF

Dynamic Analysis of Vehicle Sub-frame (차량용 서브프레임의 동특성 해석)

  • Lee, B.H.;Kim, C.J.;Kim, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1332-1339
    • /
    • 2005
  • The vibration of Powertrain are one of the import design characteristics of a vehicle. Powertrain is mostly mounted to the front subframe and powertrain mounting has an important role in determining the vehicle vibration characteristics. In this paper, the accuracy of the vibration analysis for the front subframe is discussed. The dynamic characteristic of subframe are measured from vehicle test and the finite element model updating are performed that natural frequency, mass and MAC of the experimental and theoretical modal analysis are compared. The subframe mounting stiffness are obtained the iteration method based on the vibration of subframe from vehicle test. Finally, the result of dynamic analysis which is operated dynamic load is compared with experimental one of vehicle test.

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

Full structure pseudo-dynamic test method and application based on OpenSees-OpenFresco-MTS

  • Zhen Tian;Yuan Cheng;Xuechong Ren;Mengmeng Yang
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.173-185
    • /
    • 2024
  • Currently, the electro-hydraulic servo loading control system manufactured by MTS, OpenFresco hybrid test interface software and OpenSees finite element software are widely used in structure laboratories to carry out hybrid test, but there is no relevant public information about full structure pseudo-dynamic test based on the above software and hardware. In order to study the feasibility of using the above software and hardware to carry out full structure pseudo-dynamic test, the full structure pseudo-dynamic virtual experiments of a single degree of freedom (SDOF) structure and a two degrees of freedom (2DOFs) structure are carried out based on the MTS 793 Demo Mode, and the results are respectively compared with the finite element analysis method. The results show that the finite element analysis results and full structure pseudo-dynamic virtual experiment results are highly consistent, which verifies the feasibility of carrying out the full structure pseudo-dynamic test based on the above software and hardware. Then, a three story steel frame full structure pseudo-dynamic test is conducted, and the smooth implementation of full structure pseudo-dynamic test of the three story steel frame further verifies the reliability of thistesting method. The implementation method of carrying out the full structure pseudo-dynamic tests are introduced in detail, which can provide some reference for relevant research.

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

Life Prediction of Hydraulic Concrete Based on Grey Residual Markov Model

  • Gong, Li;Gong, Xuelei;Liang, Ying;Zhang, Bingzong;Yang, Yiqun
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.457-469
    • /
    • 2022
  • Hydraulic concrete buildings in the northwest of China are often subject to the combined effects of low-temperature frost damage, during drying and wetting cycles, and salt erosion, so the study of concrete deterioration prediction is of major importance. The prediction model of the relative dynamic elastic modulus (RDEM) of four different kinds of modified concrete under the special environment in the northwest of China was established using Grey residual Markov theory. Based on the available test data, modified values of the dynamic elastic modulus were obtained based on the Grey GM(1,1) model and the residual GM(1,1) model, combined with the Markov sign correction, and the dynamic elastic modulus of concrete was predicted. The computational analysis showed that the maximum relative error of the corrected dynamic elastic modulus was significantly reduced, from 1.599% to 0.270% for the BS2 group. The analysis error showed that the model was more adjusted to the concrete mixed with fly ash and mineral powder, and its calculation error was significantly lower than that of the rest of the groups. The analysis of the data for each group proved that the model could predict the loss of dynamic elastic modulus of the deterioration of the concrete effectively, as well as the number of cycles when the concrete reached the damaged state.

A Non-recursive Formulation of Dynamic Force Analysis in Recursive Multibody Dynamics (순환 다물체동역학에서의 비순환적인 동하중해석 공식)

  • Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.809-818
    • /
    • 1997
  • An efficient non-recursive formulation of dynamic force analysis has been developed for serially connected multibody systems. Although derivation of equations of motion is based on a recursive dynamic formulation with joint relative coordinates, in the proposed formulation, dynamic forces such as joint reaction forces and driving force are computed non-recursively for specified joints. The efficiency of the proposed formulation has been proved by the operational count and the CPU time measure, comparing with that of the conventional recursive Newton-Euler formulation. A simulation of 7-DOF RRC robot arm has been carried out to validate solutions of reaction forces by comparing with those from a commercial dynamic analysis program DADS.