• Title/Summary/Keyword: dynamic FEM

Search Result 817, Processing Time 0.028 seconds

Analysis on a Hip Joint System of New RGO Using Accelerometers (가속도계를 이용한 왕복보행보조기의 고관절 시스템 해석 -인체 진동해석과 FEM 해석을 중심으로-)

  • 김명회;장대진;장영재;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.882-887
    • /
    • 2003
  • This paper presented a design and control of a new RGO(reciprocating gait orthosis)and its simulation. The new RGO was distinguished from the other one by which had a very light-weight and a new RGO(reciprocating gait orthosis) system. The vibration evaluation of the hip joint system on the new RGO(reciprocating gait orthosis)was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 ㎐. The gait of the new RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the new RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties, we made the hip joint system of FEM and the hip joint system by 1-axis and 3-axis Accelerometers.

  • PDF

Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.

Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise (브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석)

  • Lee, Hyun-Young;Oh, Jae-Eung;Cha, Byeong-Gyu;Joe, Yong-Goo;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Modal identification of time-varying vehicle-bridge system using a single sensor

  • Li, Yilin;He, Wen-Yu;Ren, Wei-Xin;Chen, Zhiwei;Li, Junfei
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.107-119
    • /
    • 2022
  • Modal parameters are widely used in bridge damage detection, finite element model (FEM) updating and design optimization. However, the conventional modal identification approaches require large number of sensors, enormous data processing workload, but normally result in mode shapes with low accuracy. This paper proposes a modal identification method of time-varying vehicle-bridge system using a single sensor. Firstly, the essential physical relationship between the instantaneous frequency of the vehicle-bridge system and the bridge mode shapes are derived. Subsequently, based on the synchroextracting transform, the instantaneous frequency of the system is tracked through the dynamic response collected by a single sensor, and further the modal parameters are estimated by using the derived physical relationship. Then numerical and experimental examples are conducted to examine the feasibility and effectiveness of the proposed method. Finally, the modal parameters identified by the proposed method are applied in bridge FEM updating. The results manifest that the proposed method identifies the modal parameters with high accuracy via a single sensor, and can provide reliable data for the FEM updating.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

Optimal design of Direct-Driven PM Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS) (DEAS(Dynamic Encoding Algorithm for Searches)를 이용한 풍력발전기 최적설계)

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Kim, Jong-Wook;Kim, Eun-Su;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.59-61
    • /
    • 2008
  • Optimal design of the direct-driven PM Wind Generator, combined with DEAS(Dynamic Encoding Algorithm for Searches) and FEM(Finite Element Method), has been proposed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, DEAS has been contributed to reducing the excessive computing time for the optimization process.

  • PDF

Dynamic Analysis of Tunnel by Using Infinite Element (무한요소를 이용한 터널의 동적해석)

  • 양신추;이희현;변재양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.145-152
    • /
    • 1994
  • The dynamic interaction between tunnel structures and their surrounding soil medium due to impulse loading is investigated by a hybrid IEM/FEM methodology. A dynamic infinite element is developed for the efficient descretization of the far-field region of the unbounded soil medium. The shape functions of the infinite element are constructed based on the far-field solutions which are obtained by solving the 2-D elastic wave problems. Also they are devised to obtain a reasonable result over all frequency range. Numerical analysis is carried out to examine the response of the tunnel subjected to simple rectangular impulse. It is indicated that the results by the present method are in good accord with those by the boundary and finite element coupling method.

  • PDF

Substructure Synthesis Method using Dynamic Reduction (동축소법을 이용한 부분구조합성법)

  • 박석주;박성현;김성우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.82-87
    • /
    • 2000
  • The component mode synthesis method(CMS) used for vibration analysis has demerit that error becomes larger, as degree of natural frequency grows higher. The reason of error occurrence is that Guyan's static reduction is used and the number of modes taken in each component is deficient. This paper proposes the substructure synthesis method using dynamic reduction to solve the problem from the component mode synthesis method. Computer simulation for the proposed method. FEM and the component mode synthesis method(CMS) on a rectrangular plate has been carried out to prove the avilability of the proposed method.

  • PDF

A Study on the Improvement of Dynamic Characteristics of ABS Outlet Valve (ABS 출구 밸브의 동특성 향상에 관한 연구)

  • 김병우;송창섭;이용주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-142
    • /
    • 2002
  • To improve the hydraulic control performance of ABS, it is necessary to establish an efficient control algorithm. And also it is necessary to ova]Hate a hydraulic modulator with solenoid valve quantitatively. In this paper, FEM and permeance method are used to analyze dynamic characteristics of outlet valve. In return, mathmatical modeling of a hydraulic modulator and operating pressure is presented, and the model parameters of an outlet valve are moving plunger, spring constant and orifice diameter. This study shows the way to improve the dynamic characteristic of an ABS outlet valve heavily depending on operating pressure. It is recommended that operating pressure should be justified at the first step toward the design to get the optimal design of an outlet valve.