• 제목/요약/키워드: dynamic FEM

검색결과 816건 처리시간 0.023초

틸팅 액츄에이터의 동특성 해석 (Dynamic Analysis of a Tilting Actuator)

  • 임형빈;정진태;류재욱;방현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.207-212
    • /
    • 2006
  • A dynamic analysis of a tilting actuator for projection TV is presented in this study. Generally, an excessive vibration of a tilting actuator is occurred a lowering of video quality of projection TV because of a dynamic unstability of it. Therefore, a dynamic analysis of a tilting actuator system is positively necessary. In this study, a mathematical model about a mirror-reactive type tilting actuator is presented and evidenced by experiment. A FEM model of a lens-transmissive type tilting actuator is presented and we made prototype of it. Then, it is evidenced by experiment. Besides, a design for hinge configuration of it is presented.

  • PDF

전자기 해석법에 의한 직선형 스위치드 릴럭턴스 전동기의 회로정수 도출 및 동특성 해석 (Analysis on Dynamic Characteristic and Circuit Parameter of Linear Switched Reluctance Motor by Electromagnetic Analytical Method)

  • 박지훈;고경진;최장영;장석명
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.318-327
    • /
    • 2010
  • This paper deals with analysis on dynamic characteristic and circuit parameter of linear switched reluctance motor by electromagnetic analytical method. Above all, using space harmonic method, which is electromagnetic method, the air-gap flux density is analyzed in the both align and unaign positions, and the inductance profile, force characteristic and resistance per phase are calculated by means of the process. The validity of the analyzed results are demonstrated by the finite element method(FEM) and manufacture of the prototype machine. Second, the dynamic simulation is analyzed by the use of circuit parameters derived from analytical method, and the operating system of the prototype machine is manufactured to demonstrated the validity of simulation analysis. As a result, it is considered that the characteristic equation suggested in this paper will contribute to the design, analysis and application of LSRM.

소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발 (Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus)

  • 박태원;임홍재;이기호;박찬종;정일호
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF

공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석 (An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method)

  • 박신욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

광 정보저장 드라이브의 동적 특성 해석 (Analysis on the Dynamic Characteristics of an Optical Storage Drive)

  • 남윤수;임종락
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.149-158
    • /
    • 1999
  • The modern trends of optical storage devices can be characterized by high density in information recording, and high bandwidth in data input/output processing rate. These make servo engineers to face with a new barrier on control system design in much more difficult way. The first step to attack this barrier will be through a systematic modeling for the dynamic characteristics of optical storage drive. in this paper, an analytical dynamic model for an optical storage drive based on FEM is drived, and compared with experimental results. Through this comparison, a practical dynamic model on the focusing and tracking motion of optical storage drive is proposed for the initiation of real control system design problem.

  • PDF

ATM 2매검지부의 동적해석 (Dynamic Analysis on the Double Bill Detector of ATM)

  • 서준호;백윤길;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.848-851
    • /
    • 2005
  • ATM(Automated-feller Machine) is a machine that receives and pays money directly. The double bill detector (DBD) module of an ATM detects double bill from its thickness. In this paper, the dynamic behavior of the DBD was analyzed numerically and experimentally. The moment of inertia of the double bill lever and the spring constant were measured respectively. And the displacements of the ]ever was measured experimentally. The measured dynamic behaviors were simulated numerically using vector equation. Through the analysis, the design factors were found to make a fast and reliable new ATM machine.

  • PDF

구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석 (The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient)

  • 양성모;송준혁;강희용;노홍길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • 제5권3호
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

발사환경에 대한 위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 정일호;박태원;한상원;서종휘;김성훈
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

온간단조에서의 소성변형과 결정입자 변화와의 관계 (Study on the Relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 제진수;김재훈
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.461-472
    • /
    • 1996
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM10C carbon steel is studied. If the carbon steel is deformed at warm forging temperature(about recrystallization range), material properties are changed due to microstructural chanre of the crystal grain and cementite of the internal part. Some experimental values are investigated in terms of the elliptic degree of cementite, the grain size of cementite and ferrite grain size. When plastic deformation proceeds, the elliptic degree of cementite becomes larger and the grain size of cementite particle becomes small. In addition, the size of ferrite grain becomes fines by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging was calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result, At the level of effective strain 0.3, dynamic recovery and dynamic recrystallization begin and at the level of over 2.5, the organization of material has better internal structure that is suitable for the following cold forming.