• Title/Summary/Keyword: dynamic FEM

Search Result 816, Processing Time 0.028 seconds

The Study on a Dynamic Analysis of Permanent Magnet Generator considering Overhang Effect (오버행을 고려한 영구자석 동기 발전기의 동특성 해석 연구)

  • Kim, Ki-Chan;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.58-62
    • /
    • 2006
  • The purpose of this paper is characteristic analysis of permanent magnet generator (PMG) for automatic voltage regulator (AVR)power of brush less synchronous generator. However, this PMG has a spoke type permanent magnet rotor with large overhang for high power density, characteristic analysis considering concentration effect of air-gap flux density due to the overhang should be performed. 30 transient finite element method (FEM)analysis is good solution for overhang parameter, but this method needs too much calculation time. In this paper, we examined the overhang effects based on overhang length and material of rotor core by using 20 and 30 static FEM analysis, and proposed 20 dynamic FEA model considering overhang parameter which gives good and rapid results. The proposed method is verified by the test results of no load, load and short circuit test.

  • PDF

The Analysis on Vector Control Characteristics of IM Using Finite Element Method (FEM을 이용한 유도 전동기의 벡터제어 특성 해석 연구)

  • Im, D.H.;Kwon, B.I.;Lee, J.H.;Woo, K.I.;Kim, C.E.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.56-58
    • /
    • 1995
  • Dynamic characteristics of the vector controlled induction motor has been analysed using d-q equivalent circuit. However, for the design of the induction motor, the analysis of an accurate response characteristic are needed. In this paper, dynamic characteristic analysis method using 2-D Finite Element Method (FEM), which takes the motion equation of the rotor into account and considers the physical motion of the rotor by an automatic subdivision of mesh, are explained.

  • PDF

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

Analysis of Hydroforming Process for an Automobile Lower Arm by Using Explicit and Implicit FEM (외연적과 내연적 유한요소법에 의한 자동차 로어암의 하이드로포밍 공정해석)

  • Kim, Jeong;Choi, Han-Ho;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.74-81
    • /
    • 2002
  • Recently tube hydroforming has been widely applied to the automotive industries due to its several advantages over conventional methods. In this paper, attention is paid to comparison of an implicit and an explicit finite element method widely used for numerical simulation of a hydroforming process. For an explicit FEM, a huge amount of computational time is required because of the very small time increment to solve a quasi-static problem. Hence, when an explicit FEM is used fDr a hydroforming process, it is general to convert the real problem to a virtual problem with a different processing time and mass density by appropriate scaling factor. However it is difficult to figure out how large the scaling should be adopted enough to ignore the dynamic effects and maintain the desired accuracy. In this paper, the comparison of the results obtained from both methods focus on the accuracy of the predicted geometrical shape and the stress with various scaling factors which are applied to analyze hydroforming process of an automobile lower arm.

New algorithm for simulating heat transfer in a complex CPFS (Cable Penetration Fire Stop)

  • Yun, Jong-Pil;Kwon, Seong-Pil;Cho, Jae-Kyu;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1798-1803
    • /
    • 2003
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. The dynamic heat transfer can be described by a partial differential equation (PDE) and its initial and boundary conditions. For the shake of simplicity PDE is divided into two parts; one corresponding to the heat transfer in the axial direction and the other corresponding to the heat transfer on the vertical layers. Two numerical methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are implemented to solve these equations respectively. The axial line is discretized, and SOR is applied. Similarly, all the layers are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The heat fluxes on the layers are calculated by FEM. It is shown that the penetration cable influences the temperature distribution of the fire stop system very significantly. The simulation results are shown in the three-dimensional graphics for the understanding of the transient temperature distribution in the fire stop system.

  • PDF

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

Numerical analysis of the magnetic fluid velocity and pressure distribution according to the various magnetic field (여러가지 자기장 배치 기법에 따른 자성유체 속도 및 압력 분포에 관한 수치해석적 연구)

  • Song, Joon-Ho;Lee, Yuk-Hyung;Bae, Hyung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we analyzed the dynamic behavior of magnetic fluid in a circular pipe with multiple permanent magnets. Magnetic fluid react on magnetic field against the normal fluid. In other words, magnetic fluid flow has the electromagnetism and fluid mechanics. So magnetic fluids has studied about the fluids properties and experiment. In this paper we studied the magnetic fluids velocity and pressure distribution for the novel type actuator. Because the velocity and pressure distribution is the important element of the magnetic fluids flow. First, we analyzed the Maxwell equation for the multiple permanent magnet and then concluded the governing equations for the magnetic fluid flow using the equation of Navier-Stokes. And, we simulated the dynamic behavior of magnetic fluid flow using the FEM(Finite Element Method). And we illustrated the relation between magnetic field and dynamic behavior of magnetic fluid flow.

  • PDF

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency (고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.