• Title/Summary/Keyword: dynamic Characteristics

Search Result 8,666, Processing Time 0.036 seconds

An Analysis of the Effects of Fine Dust Reduction Policies on PM10 Concentration and Health Using System Dynamics (시스템다이내믹스를 활용한 미세먼지 저감 정책이 미세먼지 농도와 건강에 미치는 영향 분석)

  • Seho Lee;Jung Eun Kang;Ji-Yoon Lee;Minyeong Park;Ji Yoon Choi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.318-337
    • /
    • 2023
  • This study utilizes system dynamics to examine the effects of fine dust reduction policies on PM10 concentration and health. System dynamics has the advantage of modeling the dynamic and circular relationship between PM10 emission sources, reduction policies, PM10 concentration, and health effect. The study created policy scenarios for Korea's representative fine dust reduction policies - industrial PM10 emission control, diesel vehicle regulation, expansion of electric vehicles, and expansion of parks and green areas - and compared the results with the 2030 baseline if the current trend is maintained. The analysis showed that the policy of supporting electric vehicles reduced PM10 concentration by 0.21 ㎍/m3 and reduced the number of people with circulatory diseases by 494, and the effect was evenly distributed across the country. The industrial emissions regulation scenario resulted in the highest PM10 concentration reduction of 0.22 ㎍/m3, but had a lower reduction in the number of people affected (358) than the EV support strategy, which could be attributed to the fact that this policy had a particularly high PM10 reduction effect in industrial areas such as Danyang-gun, Chungcheongbuk-do, and Sahagu, Busan. As a policy implication, this study suggests that it is necessary to apply fine dust policies tailored to the characteristics of local emission sources.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

Analysis of Shipping Markets Using VAR and VECM Models (VAR과 VECM 모형을 이용한 해운시장 분석)

  • Byoung-Wook Ko
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.69-88
    • /
    • 2023
  • This study analyzes the dynamic characteristics of cargo volume (demand), ship fleet (supply), and freight rate (price) of container, dry bulk, and tanker shipping markets by using the VAR and VECM models. This analysis is expected to enhance the statistical understanding of market dynamics, which is perceived by the actual experiences of market participants. The common statistical patterns, which are all shown in the three shipping markets, are as follows: 1) The Granger-causality test reveals that the past increase of fleet variable induces the present decrease of freight rate variable. 2) The impulse-response analysis shows that cargo shock increases the freight rate but fleet shock decreases the freight rate. 3) Among the three cargo, fleet, and freight rate shocks, the freight rate shock is overwhelmingly largest. 4) The comparison of adjR2 reveals that the fleet variable is most explained by the endogenous variables, i.e., cargo, fleet, and freight rate in each of shipping markets. 5) The estimation of co-integrating vectors shows that the increase of cargo increases the freight rate but the increase of fleet decreases the freight rate. 6) The estimation of adjustment speed demonstrates that the past-period positive deviation from the long-run equilibrium freight rate induces the decrease of present freight rate.

Design approach of passive vibration control using damping tape for quadrotor drone in hover (제자리 비행 조건에서 쿼드로터의 감쇠 테이프를 이용한 수동적 진동 제어 설계 방법 연구)

  • Sejun Kim;Hyungmo Kim;Seongwoo Cheon;Sungjun Kim;Haeseong Cho;Lae-Hyong Kang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • This paper presents a design approach for passive vibration control to reduce vertical vibrations transmitted to the control unit during hovering flight of a quadrotor drone. Ground vibration test simulation based on finite element model was performed for forced vibration analysis of the quadrotor drone. First, modal analysis was performed to evaluate dynamic characteristics. Forced vibration response analysis was then performed to obtain the steady-state response within the operating frequency range under the hovering flight condition. Furthermore, to obtain the vibration reduction effect, a viscous damping tape was applied at positions that could induce vibrations transmitted to the control unit under the same conditions. Such a passive vibration control approach was investigated. Relevant vibration reduction effect was assessed with respect to the application of damping materials and the attachment position.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Student-Centeredness of the Modality of Science Teaching Based on Discourse language Code (담화 언어 코드로 본 과학 수업 양태의 학생 중심성)

  • Maeng, Seung-Ho;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.1
    • /
    • pp.116-136
    • /
    • 2009
  • Since there are differences in the content, structure and functions of interpersonal communication during the practice of school science classes, it needs to articulate the difference of the modality of pedagogical practice in order to understand science teaching in detail. These characteristics of science teaching can be investigated by further insightful analysis on language in the science classroom. In this study, classroom discourse language codes using Bernstein's code theory were analyzed in the case of a middle school science class on the unit of minerals. The discourse language code was identified by the value of classification, which revealed power relations to the contexts of discourse and participants of discourse. It was also identified by the value of framing, which showed hierarchical relation between teacher and students as discourse subjects, and discursive control on the initiative of discourse. The results addressed that six types of discourse language codes were constructed and that those language codes reflected diverse modalities of science teaching from student-centered instruction to teacher-centered instruction in relation to classroom discourse. The modality of science teaching according to the transition tendencies of discourse language code showed dynamic variations of 'controlled student-centeredness inducing teaching' - 'positional student-centeredness permissive teaching' - 'controlled students' participation permissive teaching' - 'controlled student-centeredness facilitative teaching' - 'student-centeredness enhancing teaching'. In addition, results released that discursively and hierarchically weak control of discourse is necessary for enhancing student-centeredness of science teaching. Moreover, teaching practice enhancing student-centeredness can be accomplished by the harmony of a teacher's perception of discourse language code and his/her orientation to constructivist teaching and student-centered teaching.

Analysis of the Types of Scientific Models in the Life Domain of Science Textbooks (중등 과학 교과서의 생명 영역에 제시된 과학적 모형들의 유형 분석)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.423-436
    • /
    • 2009
  • This study aims to develop an analytic framework that can be used to classify scientific models in science textbooks according to modes and attributes of representation and to investigate types of scientific models presented in the biology section of science textbooks for the $7^{th}$ to $10^{th}$ grades. The results showed that modes of representation of scientific models are related to the nature of sub-areas of biology sections. Generally, the iconic model and symbolic model were in dominant use, including drawings of organs and explanations of working of systems. However, the chapters on 'The Organization of Life' and 'The Continuity of Life' showed a relatively high frequency in use of the actual model. The theoretical model was presented in a part of 'The Continuity of Life', due to its highly abstract characteristics. Moreover, the gestural model and analogical model showed very low frequency. From the perspective of attributes of representation, frequency of the static model was very high, while one of the dynamic models was very low. Therefore, efforts to recognize the properties of scientific concepts more clearly and to develop diverse types of models that can represent the concepts adequately are required. Analysis of these types of scientific models can offer recognition of the usefulness and limitations of models in representing the concepts or phenomena, and can help us to design adequate models depicting particular properties of given concepts. Also, this type of analysis may motivate researchers to strive to reveal correct methods for and limits of using the scientific models that are presented in existing science textbooks, as well as to provide useful information to organize the science textbooks according to the revised $7^{th}$ national science curriculum.

An Analysis of Students' Conceptions on Blood Circulation as Components: A Cross-sectional Study (혈액 순환 요소별 학생들의 개념 분석 : 횡단적 연구)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.6
    • /
    • pp.753-764
    • /
    • 2006
  • The concept of blood circulation is so complex, dynamic and abstract that students have difficulty in understanding it and students' preconceptions hardly change into scientific concepts even after the lessons. The purpose of this study is to examine middle school, high school, and undergraduate students' understanding of blood circulation and to find the reason why the lack of deep understanding is displayed in students' explanations for the blood circulation. The study consists of three parts. First, the test was designed to investigate students' ideas for blood circulation as components of the structure, the function, the behavior and the mechanism. Second, the test was applied to 7th, 10th and 13th graders to investigate the students' understanding of blood circulation and categorize the types of students' blood circulation model according to their academic level. Finally, the concepts the students had little understanding of were analyzed to decide which ontological category they fell into and further to inquire the characteristics of each concept. The results showed that many students comprehend the structure and the function of blood circulation components well, and there was no significant difference in students' understanding according to the academic level. In contrast, understanding the behavior and the mechanism of circulatory components has remarkably improved in high school students and undergraduates majoring in science and engineering. Also, students' blood circulation models were classified into seven different types. High school students and undergraduates majoring in science and engineering demonstrated a significantly higher percentage on the type of double-loop-branch compared to other academic levels. In addition, it was found that the lack of deep understanding was caused by students' misconceiving the 'equilibrium' category as 'event' category.

Automatic Recognition of Pitch Accent Using Distributed Time-Delay Recursive Neural Network (분산 시간지연 회귀신경망을 이용한 피치 악센트 자동 인식)

  • Kim Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.277-281
    • /
    • 2006
  • This paper presents a method for the automatic recognition of pitch accents over syllables. The method that we propose is based on the time-delay recursive neural network (TDRNN). which is a neural network classifier with two different representation of dynamic context: the delayed input nodes allow the representation of an explicit trajectory F0(t) along time. while the recursive nodes provide long-term context information that reflects the characteristics of pitch accentuation in spoken English. We apply the TDRNN to pitch accent recognition in two forms: in the normal TDRNN. all of the prosodic features (pitch. energy, duration) are used as an entire set in a single TDRNN. while in the distributed TDRNN. the network consists of several TDRNNs each taking a single prosodic feature as the input. The final output of the distributed TDRNN is weighted sum of the output of individual TDRNN. We used the Boston Radio News Corpus (BRNC) for the experiments on the speaker-independent pitch accent recognition. π 1e experimental results show that the distributed TDRNN exhibits an average recognition accuracy of 83.64% over both pitch events and non-events.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.