• 제목/요약/키워드: dye-sensitized solar cell (DSSCs)

검색결과 102건 처리시간 0.021초

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과 (Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell)

  • 박소현;홍성철
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.470-477
    • /
    • 2013
  • 가공이 쉬우면서도 성능이 우수한 염료 감응 태양 전지(DSSC)용 상대 전극을 제조하기 위하여 다중벽 탄소 나노튜브(MWCNT) 기반의 고충전 나노복합 페이스트를 제조하고, MWCNT의 분산 제어가 미치는 영향에 대하여 조사하여 보았다. MWCNT의 분산성을 향상시키기 위하여 폴리스티렌 기반의 기능성 블록 공중합체를 리빙 라디칼 중합법으로 합성하여 MWCNT의 표면 개질제로 사용하였으며, 적절한 용매 조건의 선택을 통하여 고충전 나노복합 페이스트의 가공성이 향상되는 것을 확인할 수 있었다. MWCNT의 분산 제어를 통해 이를 상대 전극으로 도입한 DSSC의 광전 변환 효율이 향상됨을 확인할 수 있었으며, 이는 볼밀법을 이용한 MWCNT의 물리적 분산을 통해서도 검증할 수 있었다. 미량의 platinum(Pt) 나노입자와 복합화시킬 경우, 표준 Pt 상대 전극보다도 더 우수한 성능을 가지는 MWCNT 기반 상대 전극을 제조할 수 있음을 확인하였다.

트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성 (Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells)

  • 양현식;정대영;정미란;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향 (Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells)

  • 이재욱;황경준;노성희;김선일
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.356-360
    • /
    • 2007
  • 나노 다공질 $TiO_2$ 전극막, 광 감응형 염료, 전해질 그리고 상대전극으로 구성된 염료감응형 태양전지(Dye-Sensitized Solar Cells, DSSCs)는 최근에 많은 관심을 받아오고 있다. 염료감응형 태양전지에서 $TiO_2$ 전극막은 태양광의 흡수량을 증가시키기 위해 가능한 많은 양의 Ru 착물을 표면에 흡착시켜야 하는데 이를 위해 높은 비표면적과 나노 다공성 입자로 구성된 광전극이 요구된다. 또한 에너지 전환 효율을 증가시키기 위한 방법으로 $TiO_2$ 페이스트의 제작시 산을 첨가 후 열처리하는 방법이 보고되고 있다. 이 논문에서는 산이 첨가된 페이스트로 제조한 $TiO_2$ 광전극이 염료감응형 태양전지의 에너지 변환 효율에 미치는 영향을 체계적으로 이해하기 위해 FE-SEM, XPS, EXAFS 그리고 AFM 등을 이용하여 제조된 광전극의 물리적 화학적 특성을 조사하였다. 또한 광전류-전압 곡선으로부터 산처리된 페이스트를 이용하여 제조한 염료감응형 태양전지의 에너지 전환효율을 평가하였다. 산처리된 페이스는 염료감응형 태양전지의 에너지 전환효율에 크게 영향을 미침을 알 수 있었다.

전자선 조사를 통한 염료감응형 태양전지의 분해 연구 (Application of electron beam irradiation for studying the degradation of dye sensitized solar cells)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.94-99
    • /
    • 2017
  • Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

초분자 고체전해질을 이용한 고효율 염료감응형 태양전지 (Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs))

  • 김선영;전라선;이용건;강용수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Effect of Transparency of CNT counter electrodes on the Efficiency of DSSCs

  • Lee, Won-Jae;Ramasamy, Easwaramoorthi;Lee, Dong-Yun;Song, Jae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.615-616
    • /
    • 2005
  • Carbon Nanotubes (CNT) on flexible indium tin oxide (ITO) PET films were prepared for dye-sensitized solar cell (DSSC). These CNTs were prepared by spray coating method for various amount of light transparency. Also, Pt counter electrode was prepared by electro deposition method. All $TiO_2$ electrodes were deposited on ITO-PET films by spray coating method. Micro structural images show that CNT counter electrodes prepared by spray-coating have more dense structure with increasing spraying time (0 to 60 seconds). DSSC consisting of $TiO_2$ electrode and CNT counter electrode was fabricated with various amount of light absorption. DSSC have higher light energy conversion efficiency with increasing the thickness of CNT counter electrode. CNT counter electrode is at least compatible to that of CNT counter electrode.

  • PDF

염료감응형 태양전지의 효율향상에 관한 연구 (A Study on the Efficiency Improvement of Dye Sensitized Solar Cell)

  • 김희제;석영국;김민철
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.467-470
    • /
    • 2009
  • 외부적으로 직렬 및 병렬로 접속된 50개의 DSSC로써 새로운 8 V DC 전원을 만들었다. 한 개의 DSSC는 $5.2{\times}2.6$ cm(유효면적 8 $cm^2$) 약 4.2%의 효율을 보이며, 전기화학적 임피던스 분석법 및 I-V 곡선으로 특성이 분석되었다. 또한 펄스형 Nd:YAG 레이저 빔을 활용하여 투명 도전층을 식각함으로써, 최종효율 약 45%를 달성하였다.

  • PDF

V2O5-P2O5-ZnO-Sb2O3 Glass Frit Materials with BaO and Al2O3 for Large-sized Dye-sensitized Solar Cell Sealing

  • Lee, Han Sol;Cho, Jae Kwon;Hwang, Jae Kwon;Chung, Woon Jin
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.114-118
    • /
    • 2015
  • $V_2O_5-P_2O_5-ZnO-Sb_2O_3$ glasses modified with BaO and $Al_2O_3$ are synthesized as a sealing material for large-scale dye-sensitized solar cells (DSSCs). A compositional study is performed in order to determine the glass that can be sintered below $500^{\circ}C$ with a high chemical stability against the electrolyte. The flow size of the glasses after the heat treatment and the glass stability are increased with the addition of $Al_2O_3$ and BaO, while the glass transition temperature is decreased. After the reaction with the electrolyte at $60^{\circ}C$ for 72 h, the addition of 5 mol% of BaO and 2 mol% of $Al_2O_3$ considerably enhances the chemical stability of the glass. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to examine the reaction between the electrolyte and glasses. The structural contribution of the additives is also investigated and discussed.