• Title/Summary/Keyword: dye decolorization

Search Result 128, Processing Time 0.021 seconds

Characterization of Dye Decolorization in Cell-Free Culture Broth of Trametes versicolor CBR43

  • Ryu, Hyun;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.155-160
    • /
    • 2017
  • The dye decolorization rate in a cell-free culture broth of the white-rot fungus Trametes versicolor CBR43 was studied, including the effects of inhibitors of NaCl, Zn(II), and Cd(II) on dye decolorization activity. The maximum rates of dye decolorization in cell-free culture broth were 1,410, 44.7, 41.2, and $0.19{\mu}mol{\cdot}l^{-1}{\cdot}min^{-1}$ for Acid Blue 62, Acid Black 175, Reactive Blue 4, and Acid Red 114, respectively. The inhibition effects of NaCl, Zn(II), and Cd(II) on dye decolorization were quantitatively compared using the half maximal inhibition concentration ($IC_{50}$), which indicates the concentration of an inhibitor required for 50% inhibition. Based on $IC_{50}$ values, dye decolorization in the cell-free culture broth of CBR43 was most potently inhibited by Cd(II), whereas the inhibitory effect of NaCl was relatively low. The dye decolorization rates and $IC_{50}$ data can be used in the design and development of a dye-wastewater treatment process using T. versicolor CBR43 and its operating factors.

Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs

  • Zonoozi, M. Hasani;Moghaddam, M.R. Alavi;Maknoon, R.
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.281-293
    • /
    • 2014
  • The present work aimed to study the decolorization kinetics and characteristics of a selected azo dye under the influence of two key operational parameters including hydraulic retention time (HRT) and solid retention time (SRT). The decolorization efficiency and the two important criteria of k and normalized k (k/MLSS) were evaluated in lab-scale membrane sequencing batch reactors (MSBRs) at various HRTs of 48, 24 and 16 h (with constant SRT) and in addition, at various SRTs of infinity, 40 and 10 d (with constant HRT). According to the obtained results, both zero and first-order kinetics were properly fitted the decolorization profiles of the selected azo dye in all of the applied HRTs and SRTs. Increase of both HRT and SRT positively affected the decolorization efficiency. More MLSS concentrations corresponded to the lower HRTs and the higher SRTs resulted in higher decolorization rate constants (k). However, the effect of reducing the HRT was not compensated by increase of the MLSS concentration in order to reach higher decolorization efficiency. In addition, increase of the decolorization efficiency, as a consequence of the higher MLSS concentrations at longer SRTs, was restrained by decrease of the time-limited decolorization capability of biomass (represented by normalized k). Evaluation of both k and normalized k is suggested in order to have a more precise study on the decolorization kinetics and characteristics.

Biological Decolorization Characteristics of Dyeing Wastewater (염색폐수의 생물학적 색도제거 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Shin, Eung-Bai
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.333-341
    • /
    • 2006
  • The concept for the decolorization in biological dye wastewater treatment systems is based on anaerobic treatment, for the reductive cleavage of the dyes' azo linkages, in combination with aerobic treatment, for the degradation of the products from azo dye cleavage, aromatic amines. Batch tests were conducted to examine the conditions and the factors affecting biological treatment of dye wastewater. From the tests, the removal efficiencies of organics and colors of dyeing wastewater were improved to $COD_{Cr}$ 27% and color 9% by injecting 10% of the domestic wastewater as a cosubstrate, and $COD_{Cr}$ 30%, color 22% with 30% injection of domestic wastewater. Therefore it was proved that decolorization efficiency is demonstrated with domestic wastewater as a cosubstrate. The analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently.

Degradation and Detoxification of Disperse Dye Scarlet RR by Galactomyces geotrichum MTCC 1360

  • Jadhav, S.U.;Ghodake, G.S.;Telke, A.A.;Tamboli, D.P.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.409-415
    • /
    • 2009
  • Galactomyces geotrichum MTCC 1360 degraded the Scarlet RR(100 mg/l) dye within 18 h, under shaking conditions(150 rpm) in malt yeast medium. The optimum pH and the temperature for decolorization were pH 12 and $50^{\circ}C$, respectively. Enzymatic studies revealed an induction of the enzymes, including flavin reductase during the initial stage and lignin peroxidase after complete decolorization of the dye. Decolorization of the dye was induced by the addition of $CaCO_3$ to the medium. EDTA had an inhibitory effect on the dye decolorization along with the laccase activity. The metabolites formed after complete decolorization were analyzed by UV-VIS, HPLC, and FTIR. The GC/MS identification of 3 H quinazolin-4-one, 2-ethylamino-acetamide, 1-chloro-4-nitro-benzene, N-(4-chloro-phenyl)-hydroxylamine, and 4-chloro-pheny-lamine as the final metabolites corroborated with the degradation of Scarlet RR. The phytotoxicity study revealed the nontoxic nature of the final metabolites. A possible degradation pathway is suggested to understand the mechanism used by G. geotrichum and thereby aiding development of technologies for the application of this organism to the cleaning-up of aquatic and terrestrial environments.

Bioprocess of Triphenylmethane Dyes Decolorization by Pleurotus ostreatus BP Under Solid-State Cultivation

  • Yan, Keliang;Wang, Hongxun;Zhang, Xiaoyu;Yu, Hongbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1421-1430
    • /
    • 2009
  • With an aim to evaluate dye decolorization by white rot fungus on natural living conditions, reproducing by solid-state fermentation, the process of triphenylmethane dyes decolorization using the white rot fungus P. ostreatus BP, cultivated on rice straw solid-state medium, has been demonstrated. Three typical dyes, including malachite green, bromophenol blue, and crystal violet, were almost completely decolorized by the fungus after 9 days of incubation. During the process of dye decolorization, the activities of enzyme secreted by the fungus, and the contents of soluble components, such as phenolic compounds, protein, and sugar, changed regularly. The fungus could produce ligninolytic, cellulolytic, and hemicellulolytic enzymes and laccase was the most dominant enzyme in solid-state medium. Laccase, laccase isoenzyme, and the laccase mediator could explain the decolorization of malachite green, bromophenol blue, and crystal violet by the fungus in solid-state medium, respectively. It is worth noting that the presence of the water-soluble phenolic compounds could stimulate the growth of fungus, enhance the production of laccase, and accelerate dye decolorization.

Semicontinuous Decolorization of Azo Dyes by Rotating Disc Contactor Immobilized with Aspergillus sojae B-10

  • Ryu, Beung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Aspergillus sojae B-l0 was immobilized and used to treat model dye compounds. The model wastewater, containing 10 ppm of azo dyes such as Amaranth, Sudan III, and Congo Red, was treated with cells attached to a rotating disc contactor (RDC). Amaranth was decolorized more easily than were Sudan III and Congo Red. Decolorization of Amaranth began within a day, and the dye was completely decolorized within 5 days of incubation. Both Sudan III and Congo Red were almost completely decolorized after 5 days of incubation. Semicontinuous decolorization of azo by reusing attached mycelia resulted in almost complete decolorization in 20 days. This experiment indicated that decolorization was successfully conducted by removing azo dyes with Aspergillus sojae B-10.

Decolorization of Poly R-478 Dye by Coriolus versicolor IFO 30388 (구름버섯(Coriolus versicolor IFO 30388)에 의한 Poly R-478 염료의 탈색)

  • Yoon, Kyung-Ha
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.182-185
    • /
    • 1994
  • Effects of nitrogen and carbon sources on the decolorization rate of poly R-478 dye by a white rot basidiomycete Coriorus versicolor IFO 30388 were examined. The fungus exhibited 87.2% of decolorization rate when it was cultured in the state of stationary in a nitrogen-limited medium (pH 4.5) which contained 2.0% glucose, 0.04% ammonium tartrate, 0.02% poly R-478 dye, 2% $KH_2PO_4$, 0.5% $MgSO_4{\cdot}7H_2O$, 0.1% $CaCl_2{\cdot}2H_2O$, 0.002% thiamine-HCl and 10 mM 2,2 dimethylsuccinate (sodium) at $28^{\circ}C$ for 10 days. Decolorization of the dye occurred in the presence of nitrogen source in the medium and decolorization rate increased rapidly after depletion of $NH_4^+$ from the medium.

  • PDF

Decolorization and organic removal characteristics of a SBR process combined with zero-valent iron column (ZVI (Zero-Valent Iron)를 조합한 SBR 공정의 색도 및 유기물 제거 특성)

  • Choi, YoungGyun;Park, ByungJu;Kim, SeongHong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • The purpose of this study was to evaluate the performances of zero-valent iron (ZVI) combined SBR (Z-SBR) process in decolorization and organic removal of synthetic dye wastewater. The batch test for optimizing the operation parameters of ZVI column showed that the appropriate EBCT was around 11 min and the pH of the dye wastewater was below 7.0. During the step increase of influent color unit from 300 to 1,000cu, about 53 to 79% decolorization efficiency could be achieved in control SBR (C-SBR, without ZVI column), which resulted from destroying azo bond of synthetic dye in anaerobic condition. For the same influent color loading, Z-SBR showed always higher decolorization efficiency than C-SBR with an aid of ZVI reducing power. The TCOD concentration in Z-SBR effluent was 20-30mg/L lower than C-SBR effluent although the TCOD before and after ZVI column was nearly same. It means that breakdown of azo bond by ZVI reducing power could increase biodegradability of synthetic dye wastewater.

Laccase Activity and Azo Dye Decolorization Potential of Podoscypha elegans

  • Pramanik, Satadru;Chaudhuri, Sujata
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.79-83
    • /
    • 2018
  • Azo dyes containing effluents from different industries pose threats to the environment. Though there are physico-chemical methods to treat such effluents, bioremediation is considered to be the best eco-compatible technique. In this communication, we discuss the decolorization potentiality of five azo dyes by Podoscypha elegans (G. Mey.) Pat., a macro-fungus, found growing on the leaf-litter layer of Bethuadahari Wildlife Sanctuary in West Bengal, India. The fungus exhibited high laccase and very low manganese peroxidase activities under different culture conditions. Decolorization of five high-molecular weight azo dyes, viz., Orange G, Congo Red, Direct Blue 15, Rose Bengal and Direct Yellow 27 by the fungus was found to be positive in all cases. Maximum and minimum mean decolorization percentages were recorded in Rose Bengal (70.41%) and Direct Blue 15 (24.8%), respectively. This is the first record of lignolytic study and dye decolorization by P. elegans.

Degradation and Ecotoxicity Reduction of Reactive Dye by Using Advanced Oxidation Process (고도산화공정을 이용한 반응성 염료의 제거 및 생태독성 저감)

  • Seo, Kyung Ae;Park, Jae Hong;Jung, Soo Jung;Lim, Byung Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • In this study, the deriving optimum conditions for decolorization of Acid Orange II solution was carried using $TiO_2$ advanced oxidation process. After that, on base of the deriving results, the range of dye concentration was estimated. In addition, acute toxicity test was also carried to assess toxicity unit according to decolorization and TOC removal. In case of the blockage of light, 20 mg/L of dye solution, and 0.5 g $TiO_2$, the effect of decolorization at pH 3 was larger than at pH 6 and 10, so it was shown that decolorization is dependent on pH. The use of 5 g $TiO_2$ showed best performance of decolorization, but that of 3 g $TiO_2$ was chosen to optimum condition in considering of economical aspects. Four light sources, sun, fluorescent lamp, BLB lamp, and UV-B lamp, were used and decolorization was 99.4% and 100% at 50 mg/L, 98.6% and 99.7% at 100 mg/L for sun and UV-B lamp, respectively. In spite of the optimum condition of decolorization at pH 3, the evaluation of acute toxicity test showed highly toxic. In conclusion, although the optimum treatment of dye solution is performed, water ecology can be polluted in discharging it into water system. Therefore, it is needed to study of water ecological system with dye water treatment, and it takes all the circumstances into consideration.