• Title/Summary/Keyword: dust pollution

Search Result 511, Processing Time 0.032 seconds

Evaluation of the Effect of Burning Rice Paddy Fields on Arthropods in Rice Paddy Fields and Agricultural Fields (논 태우기가 논 포장 및 농경지 서식 절지동물에 미치는 영향 평가)

  • Kong, Minjae;Jeon, Sungwook;Kwon, Kyoung-Hwa;Song, Soon-I;Kim, Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.993-1003
    • /
    • 2021
  • It is known that the effect of traditional agricultural techniques of burning farmland such as paddy fields and fields gradually declines and affects both the fauna and flora of the rice paddy as well as pests. Therefore, in this study, a study was conducted to investigate the effects of burning rice paddy fields and rice paddy fields levee on the control effect of winter pests inhabiting agricultural land and the amount of pests generated and damaged during the growing season. As a result of this study, the pest control effect of incineration reduces not only the density of pests, but also beneficial insects (natural enemies) and non-reptiles. It is judged that burning has a very low insect control effect. It is expected to be used as basic data to create a sustainable agricultural environment, such as minimizing various negative effects such as pest control effects, wildfires, and air pollution caused by incineration, and suppressing unnecessary incineration and fine dust generation.

Effect of May 31, 2022 Miryang Forest Fire on Fine Particle Concentration in Nearby Urban Areas (2022년 5월 31일 발생한 밀양산불이 인근 도시 지역의 미세먼지 농도에 미치는 영향)

  • Byung-Il Jeon
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study investigated the effect of May 31, 2022 Miryang wildfire on fine particle concentrations in Busan and Gimhae, which are neighboring urban areas. In addition, fine particle characteristics and air pollution concentrations were investigated in Miryang, where haze occurred. The Miryang city wildfire that occurred on May 31, 2022, at 0925 LST, was driven by strong north winds and increased fine particle concentrations in Dongsangdong and Jangyoodong, Gimhae City, which are approximately 35 km to the southeast and south, respectively, of the wildfire occurrence site. Furthermore, the fine particle concentration in Myeongjidong, which is approximately 50 km south-southeast of the wildfire site, exhibited a temporary increase at 1400 LST owing to the effects of wildfire smoke. On the morning of June 1, the day after the fire, the Miryang area had very bad visibility because of the smoke from the fire. Therefore the PM10 and PM2.5 concentrations in Naeildong, 3 km south of the wildfire site, were 276 ㎍/㎥ and 222 ㎍/㎥, respectively, at 1200 LST. In addition, the gases O3, CO, and SO2 showed high concentrations at the time of haze generation. This study provides insights into policy making in response to the rapid increase in fine dust when wildfire occurs near cities.

A Study on Architectural Form of Waste to Energy Plants in accordance with Law - Focus on Seoul and Tokyo - (법규에 따른 자원회수시설의 건축적 형태에 관한 연구 - 서울과 도쿄를 중심으로 -)

  • Jung, Seung-won;Lee, Kang-jun
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • Waste to Energy Plant were recognized as hateful facilities, and there were many conflicts in the location due to social problems such as the NIMBY phenomenon due to problems such as damage to property in the surrounding area, odor, and image loss. Problems such as air pollution and odor are solved by the development of advanced prevention facilities such as electric dust collectors, wet cleaning systems, semi-dry reaction towers, bag filters, and catalyst towers (SCR: Selective Catalytic Reduction), and air recycling facilities in waste storage tanks. However, it is being avoided because of the perception that it is an incinerator. To resolve these conflicts, the government installs and operates resident convenience facilities to compensate residents near resource recovery facilities, provides green space and improves the environment, and supports heating expenses in accordance with the 「Waste Treatment Facility Support Act」. The purpose of this study is to derive implications through the analysis of domestic and overseas case studies for resident convenience facilities and environment improvement for the promotion of local communities in resource recovery facilities and use them as basic data for community promotion and environmental improvement when installing resource recovery facilities in the future.

LSTM-based Fine Dust Concentration Prediction using Meteorogical factors and Air Pollution factors (기상 인자와 대기오염 인자를 활용한 LSTM 기반의 미세먼지 농도 예측)

  • Yoo, Jihoon;Shin, Dongil;Shin, Dongkyoo
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.508-511
    • /
    • 2020
  • 미세먼지(PM10, PM2.5)는 배출가스 증가와 함께 빠르게 악화되어 왔으며, 다양한 화학성분 뿐만 아니라 금속 성분이 포함되어 있어 인체에 큰 유해성을 발생한다. 이에 정부는 미세먼지 저감 정책 및 법률을 통해 개선하고자 했지만, 2013년부터 그 효력을 잃기 시작하였다. 이에 본 연구에서는 미세먼지 저감 정책 및 법률을 수립하는데 있어 가장 중요한 요소인 미세먼지 농도를 예측하는 연구를 진행한다. 이전 연구들에서 미세먼지 영향 요소들이 시계열 기반의 데이터(기상인자와 대기오염 인자)인 것을 확인하였기에, 시계열 데이터에 좋은 성능을 보이는 LSTM 알고리즘을 사용하여 학습 후, 서울시 '구별' '시간단위' 미세먼지 농도 예측에 대한 예측 오차(RMSE, MAE) 성능을 비교하였다. 실험 결과 PM10의 경우 (7.2, 4.78), PM2.5의 경우 (4.7, 3.2)의 예측 오차를 보였으며, 금천구의 경우 PM10이 (5.3, 3.71), PM2.5에서 (3.5, 2.5)로 가장 좋은 성능을 보였다.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

The Fact-finding and Analysis of the Environmental Management Cost in Construction Projects (건설공사의 환경관리비용 계상 및 운용 실태 분석)

  • Choi, Min-Soo;Kang, Woon-San
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.5 s.27
    • /
    • pp.186-192
    • /
    • 2005
  • The purpose of this study is to find the reality of environmental management cost in construction projects and to suggest some policies in order that owners appropriate the environmental management cost reasonably in the construction budget for reducing the environmental pollution at job sites. We surveyed the actual state of appropriating and expending the environmental management cost over 122 construction sites. According to the results of the survey, while the appropriated rate of the environmental management cost was 0.59% of the total construction cost. the expended rate reached at 0.94%. When examining the antipollution facilities which were operated in job sites, the investment for equipment against air-pollution such as tire washer, dust-proof device was relatively higher than other antipollution equipment. As the method appropriating the environmental management cost, we concluded that a quantity-per-unit costing method is more reasonable than appropriating at a fixed rate of total construction cost considering that there is little correlation between total construction cost and the environmental management cost. To do so, antipollution facilities that must be examined at a design or estimation stage of a construction project should be prescribed by the law. Moreover, referenced cost data for the quantity-per-unit costing should be prepared and officially published.

Properties of Harmful Substances Absorption Eco-friendly Artificial Stone Containing Basalt Waste Rock (현무암 폐석을 첨가한 유해물질 흡착 친환경 인조석재의 특성)

  • Pyeon, Su-Jeong;Gwon, Oh-Han;Kim, Tae-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, Both rapid economic growth and high-quality native finishing materials demand in buildings such as local infrastructure facilities and cultural facilities have increased along with local quarries. So, increasing local quarries and environmental pollution occurred in quarries get the eyes to damaged area of the surroundings. As an example, carcinogen such as solid formed to fixing asbestos and dust have damaged to local resident. Especially, Radon gas released from asbestos can exist everywhere on earth, released soil and rock as radioactive substances, can be caused lung cancer followed by a smoking. When pollution source to indoor air quality that lacking ventilation rate of the residential building moved in a cycle, human responses such as headache, dizziness, etc. get appear, so on it threatened resident's physical condition. Thus, we need to urgent attention to reduction harmful substance. In the case of radon gas of the pollution source to indoor air quality in housing, it has characteristic that keep on going through half-life released from source, we need to control radon gas source than source removal. We set on vermiculite addition ratio to 10% which has harmful substances adsorption performance, proceed experiment to basalt waste rock addition ratio 50, 60, 70, 80(%). The result of an experiment, based on 'KS F 4035, precast terrazzo', we can be obtainable in the best terrazzo at basalt waste rock addition ratio 70%.

Studies on the Effects of Atmospheric Pollution in Sericulture -Injuries of Sulphur Dioxide and Cadmium on Parent Silkworms Rearing- (대기공해가 양잠에 미치는 영향에 관한 연구 -원잠종 사육에 있어서 아황산 가스 및 카드미움의 해를 중심으로-)

  • 이종철;최진협;배계선;손흥대
    • Journal of Sericultural and Entomological Science
    • /
    • v.21 no.1
    • /
    • pp.36-44
    • /
    • 1979
  • Those studies were examined rearing two varieties on Japanese descent and two varieties of Chinese descent by feeding polluted mulberry leaves, non-polluted ones and water-cleaned ones respectively to find effects of air-pollution on the economic characters of silkworms and analysis of contents of Sulphur and Cadmium in the mulberry leaves and silkworms as followings; 1) Japanese descent of polluted part was delayed about 2.5 days than non-polluted part, Chinese descent was delayed about 4 days or inequal and water-cleaned part was medium in the silkworm larval duration. 2) Results of maximum weight of 5th instal, cocoon layer weight and cocoon weight were decreased in due order non-polluted, water-cleaned and polluted in the factors of mulberry 3) Pupal ratio of Japanese descent was not shown statistical significance, but Chinese descent was revealed it obviously in the factors of mulberry leaves. 4) In the resistance of polluted mulberry leaves, Chinese descent was feeble obviously than Japanese and there were some difference even through among the same varieties. 5) The content of S and Cd of polluted area mulberry leaves was increased about 30% respectively than non-polluted area. 6) The fed part of non-polluted mulberry leaves was S 0.41% and Cd 0.013 ppm water-cleaned part was S 0.47% and Cd 0.024 ppm and polluted part was S 0.52% and Cd 0.042 ppm in the contents of S and Cd of silkworm larvae. 7) The contents of S and Cd didn't make visible injury in mulberry leaves but made it seriously in silkworm larvae. 8) The injury of dust on mulberry leaves was more serious than that of quality of mulberry leaves by air-pollution in the economic characters of silkworm. 9) As above results, Chinese descent should avoid contaminated area and it rearing by water-cleaned mulberry leaves can get noticable results in inevitable case on selection of parents silkworm rearingzone.

  • PDF

Oil Fence Durability Enhancement for Marine Environmental Protection : Improvement of Inspection Process (해양환경 보호를 위한 오일펜스의 내구성 향상 : 검정제도 개선 방향)

  • Jang, Pankil;Seo, Jeong Mog;Lee, Heejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.731-736
    • /
    • 2021
  • Oil fences effectively prevent the spread of oil spilled in the sea, thereby reducing the damage to the marine environment. However, the fence is damaged by oil and structures at the accident site and is discarded. When incinerated disposal method for discarded fences, fine dust, and harmful materials are generated. Moreover, as a part of the damaged fence is dumped into the sea, it may cause secondary environmental pollution, such as microplastics. Therefore, in this study, durability was measured using the most common solid foam type oil fences. As a result, the reduction rate of after five days of contact was 13 % in seawater and 3 % in oil, affected by temperature changes. Thus, the durability of the fence should be improved because it is exposed to seawater and oil and affected by wind, light, and waves depending on the weather conditions. Therefore, we suggest a method to improve the oil fence inspection to strengthen the durability of the fence's fabric part.

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.