• Title/Summary/Keyword: ductility effect

Search Result 777, Processing Time 0.032 seconds

A Study on the Strengthening Effect of Reinforced Conctete BeamsFlexural Strengthening after Pre-loading (선가력 후 휨 보강한 RC보의 보강 효과에 관한 연구)

  • Kim, Jeong-Sup;Sin, Yong-Seok;Jo, Cheol-Hee;Kim, Kyoug-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.183-190
    • /
    • 2006
  • From the result of this research above, it may be summed up as follows. As a summary of results from each experiment, as the test body reinforced with the carbon rods was embedded inside the concrete section and made it possible uniform movement, this study has shown that it had excellent characteristics in improving the flexural strength and ductility. Also, it was considered as the carbon-steel sheet composite plate was to exert the strength more if it would complement the adherence with the concrete.

Dynamic Recrystallization Effect on the Fracture Toughness of Al7050 Extruded Components (동적 재결정에 따른 Al7050 압출재의 파괴인성 변화)

  • J. W. Choi;Y. H. Jung;J. I. Son;B. G. Cheon;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.315-321
    • /
    • 2024
  • Although achieving a high fracture toughness is essential for designing reliable aircraft components using aluminum alloys, only a limited number of studies have discussed the relationship between microstructure and fracture toughness. Therefore, in this study, the effects of dynamic recrystallization on the fracture toughness of Al7050 extruded alloy were investigated. Because of the temperature deviation in the extruded large component, incomplete dynamic recrystallization (DRX) occurred that results into the higher Kernel average misorientation (KAM) and sub-grain structure fraction compare with the complete DRX region. Although incomplete DRX changes KAM and sub-grain fraction, the strength and ductility difference between complete and incomplete DRX regions are not in big difference. The accumulated KAM reduces the plastic zone size, and both cleavage and a lower micro-void fraction are observed in the incomplete DRX region. Based on the different fracture behavior from different DRX behavior, the fracture toughness of the incomplete DRX is lower than that of the complete DRX region. This result implies how a different DRX behavior from temperature variation affects to the fracture toughness of high-strength aluminum alloys.

Effects of the Coiling Temperature and Anisotropy on the Tensile Properties of High-Strength API X70 Linepipe Steel

  • Dong-Kyu Oh;Seung-Hyeok Shin;Sang-Min Lee;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1487-1490
    • /
    • 2022
  • In this study, the effect of the coiling temperature on the tensile properties of API X70 linepipe steel plates is investigated in terms of the microstructure and related anisotropy. Two coiling temperatures are selected to control the microstructure and tensile properties. The API X70 linepipe steels consist mostly of ferritic microstructures such as polygonal ferrite, acicular ferrite, granular bainite, and pearlite irrespective of the coiling temperature. In order to evaluate the anisotropy in the tensile properties, tensile tests in various directions, in this case 0° (rolling direction), 30°, 45° (diagonal direction), 60°, and 90° (transverse direction) are conducted. As the higher coiling temperature, the larger amount of pearlite is formed, resulting in higher strength and better deformability. The steel has higher ductility and lower strength in the rolling direction than in the transverse direction due to the development of γ-fiber, particularly the {111}<112> texture.

Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes (9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구)

  • Lee, Cheol-Ho;Kim, Sung-Yong;Park, Ji-Hun;Kim, Dong-Kwan;Kim, Tae-Jin;Park, Kyoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints Retrofitting with Fiber Reinforced Polymer Sheets and Embedded CFRP Rods (섬유시트와 매입형 CFRP Rod를 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (CFRP sheet, AFRP sheet, embedded CFRP rod) in existing reinforced concrete structure. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens LBCJ-CRUS, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.54 times and its energy dissipation capacity by 2.36 times in comparison with standard specimen LBCJ for a displacement ductility of 4 and 7. And Specimens LBCJ-CS, LBCJ-AF series were increased its energy dissipation capacity each by 2.04~2.34, 1.63~3.02 times in comparison with standard specimen LBCJ for a displacement ductility of 7.

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

Effect of Hybrid Fibers on the Engineering Properties of HPFRCC (섬유 조합변화가 HPFRCC의 공학적 특성에 미치는 영향)

  • Han, Dongyeop;Han, Min Gheol;Kang, Byeong Hoe;Park, Yong Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • For the construction materials, concrete, as the most widely used material, is focused on its improvement of performance. Although concrete has many advantages of easiness of handling, economical benefits, and high compressive strength, low tensile strength, brittleness and drying shrinkage are reported as the drawbacks of concrete. Hence, to solve these drawbacks of concrete, many research has conducted especially using fiber-reinforced concrete technology. Especially, HPFRCC which has high volume of fiber reinforcement was suggested as a solution of these drawbacks of normal concrete with increased ductility while it has the possibility of workability loss with fiber clumping which can cause low performance of concrete. Therefore, in this paper, optimized fiber combination with either or both metal and organic fibers is suggested to provide better performance of HPFRCC in tensile strength and ductility. As the results of experiment, better workability was achieved with 1 % of single fiber rather than multiple fibers combinations, espeically, short steel fiber showed the best workability result. Furthermore, in the case of organic fibers which showed higher air content than steel fibers, higher compressive strength was achieved while lower tensile and flexural strength were shown.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Embedded CFRP Rods and CFRP Sheets (매입형 CFRP Rod와 CFRP시트를 활용한 RC 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.40-48
    • /
    • 2014
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (embedded CFRP rod and CFRP sheet) in existing reinforced concrete building. Therefore it was constructed and tested six specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRC2, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.97 times and its energy dissipation capacity by 2.08 times in comparison with standard specimen RBCJ for a displacement ductility of 4 and 7. Also, specimens RBCJ-SRC2 were increased its maximum load carrying capacity by 1.09~1.11 times in comparison with specimen RBCJ-SR series. And Specimens RBCJ-CS, RBCJ-SR series, RBCJ-SRC2 were increased its energy dissipation capacity by 1.10~2.30 times in comparison with standard specimen RBCJ for a displacement ductility of 5, 6.