• Title/Summary/Keyword: ductile failure mechanism

Search Result 47, Processing Time 0.018 seconds

A Study on the Application of Pre-Indentation Technique for Fastener Hole Model (FASTENER HOLE 모델의 대한 예비압입 적용 연구)

  • Hwang,Jeong-Seon;Jo,Hwan-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.26-31
    • /
    • 2003
  • Aging aircraft accumulates widespread fatigue damage commonly referred to as multiple site damage(MSO). For ductile material such as 2024-T3 aluminum, MSO may lower the service life below that which is predicted by conventional fracture mechanics. The present paper is concerned with the fatigue life extension by pre-indentation technique for thin 2024-T3 aluminum plate to decelerate the crack propagation rate in the panels with MSO. The panel with fastener holes can be simply modelled by Hole/Slot type Middle-Tension specimen. Results of fatigue testing show significantly improving failure cycles from 10 to 40 times. This retardation effect is decreased by increasing the loading level in the constant amplitude loading. In the sense of retardation mechanism, the crack propagation rate is gradually attenuated by entering the indentation mark and maintains at the lowest value for a long period after the edge of crack passes the center of indentation area.

Failure Analysis by Fracture Study of Connecting Rod Bolts in Diesel Engine for Military Tracked Vehicles (군용 궤도차량 디젤엔진의 커넥팅 로드 볼트 파손 검토를 통한 고장원인분석)

  • Oh, Dae San;Kim, Ji Hoon;Seo, Suk Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.191-200
    • /
    • 2020
  • Tracked military vehicles are operated under harsher conditions and climates than ordinary vehicles, and the components require high degrees of reliability and durability. A diesel engine is the main power generator, and when the vehicle breaks down, there is a high possibility of causing a large-scale accident. Therefore, analyzing the cause of engine failure can be important for preventing similar cases that may occur. In this study, we clarified the mechanism of engine failure according to an overhaul test, hardness measurement, and an analysis of the fracture surface. The overhaul test confirmed that a bolt was separated from the connecting rod (number 4). In addition, the hardness measurement results of the connecting rod bolt conformed to the standard, and it was found that the bolt fracture was ductile fracture through an analysis of the fracture surface. Based on the results, it was concluded that damage to a diesel engine of a tracked military vehicle was caused by separating and damage caused by loosening of the connecting rod bolts, resulting in cascading damage. The results of the study could be used as reference examples and could be useful for another study on engine failure analysis.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Plastic Hinge Length of Reinforced Concrete Columns with Low Height-to-Width Ratio (전단경간비가 작은 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Woo, Jae-Hyun;Kim, Byung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.675-684
    • /
    • 2010
  • The reinforced concrete members are designed to fail in flexural to lead ductile fracture. In the building structures, the failure is typically imposed on beams to prevent damages in columns. However, progression of plastic collapse mechanism may ultimately develop, a plastic hinge at the bottem end of the first floor column, which then can be subjected to shear or bond finally due to large axial force and small shear span-to-depth ratio. In this study, 10 RC column specimens failed in shear after flexural yielding was investigated to determine the factors affecting the plastic hinge length. The findings of this study showed that the most effective factor affecting the plastic hinge length was an axial force. As an axial force increase, an axial strain and a ductility ratio were decreased obviously. The test also shows the observed plastic hinge length was about 0.8~1.2d and the this result has difference compared with forward research.