DOI QR코드

DOI QR Code

A Study on the Application of Pre-Indentation Technique for Fastener Hole Model

FASTENER HOLE 모델의 대한 예비압입 적용 연구

  • 황정선 (공군사관학교 기계공학과) ;
  • 조환기 (공군사관학교 항공공학과)
  • Published : 2003.11.01

Abstract

Aging aircraft accumulates widespread fatigue damage commonly referred to as multiple site damage(MSO). For ductile material such as 2024-T3 aluminum, MSO may lower the service life below that which is predicted by conventional fracture mechanics. The present paper is concerned with the fatigue life extension by pre-indentation technique for thin 2024-T3 aluminum plate to decelerate the crack propagation rate in the panels with MSO. The panel with fastener holes can be simply modelled by Hole/Slot type Middle-Tension specimen. Results of fatigue testing show significantly improving failure cycles from 10 to 40 times. This retardation effect is decreased by increasing the loading level in the constant amplitude loading. In the sense of retardation mechanism, the crack propagation rate is gradually attenuated by entering the indentation mark and maintains at the lowest value for a long period after the edge of crack passes the center of indentation area.

노후 항공기는 일반적으로 다중손상(MSD)이라고 하는 폭넓게 분포된 피로손상을 내포하고 있다. 2024-T3 알루미늄합금과 같은 연성재료에 있어서 다중손상은 전통적인 파괴역학에서 예측할 수 있는 것보다 낮은 운용수명을 예측하게 만드는 것으로 알려져 있다. 본 논문에서는 다중손상을 갖는 평판 구조물을 모델링한 Fastener Hole을 갖는 2024-T3 알루미늄합금 판재로 제작된 Hole/Slot type M(T) 시편에 예입압입을 적용한 후 피로시험을 수행하여 피로균열 성장지연에 의한 운용수명 증가에 대한 효과를 연구하였다. 예비압입을 적용한 시편은 파단에 이르는 사이클수가 최소 10배에서 최대 40배까지 증가하였으며, 일정진폭 하중의 최대값을 증가시킴에 따라서 그 효과가 감소함을 보여주었다. 또한, 압입에 의한 균열성장지연 메커니즘은 균열진전경로가 압입자국에 들어서면서 균열성장률이 감소하기 시작하며 압입자국의 중심을 지나면서 최소균열성장률 상태로 일정한 시간동안 균열성장이 정체됨으로써 피로수명이 연장됨을 밝혔다.

Keywords

References

  1. T. Swift, "Widespread Fatigue Damage Monitoring-Issues and Concerns," Proceedings of the 5th International Conference on Structural Airworthiness of New and Aging Aircraft, Washington DC, 1993, pp. 133-150.
  2. J. R. Maclin, "Performance of Fuselage Pressure Structure," International Conference on Aging Aircraft and Structural Airworthiness, NASA CP 3160, 1991, pp. 67-74.
  3. B. Smith, A. Mouak, P. Saville, R. Myose, and W. Horn, "Improved Engineering Methods for Determining the Critical Strengths of Aluminium Panels with Multiple Site Damages in Aging Aircraft," NASA Conference Publications, Vol. 208982, No. 2, 1999, pp. 525-534.
  4. B. L. Smith, A. Hijazi, A. K. M. Haque, and R. Y. Myose, "Strength of Stiffened 2024-T3 Aluminum Panels with Multiple Site Damage," Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 764-768. https://doi.org/10.2514/2.2829
  5. R. Galatolo, and K. F. Nilsson, "An Experimental and Numerical Analysis of Residual Strength of Butt-Joints Panels with Multiple Site Damage," Engineering Fracture Mechanics, Vol. 68, No. 13, 2001, pp. 1437-1461. https://doi.org/10.1016/S0013-7944(01)00027-3
  6. 황정선, 조환기, 김주언, "Al 5052-H18의 피로균열 성장지연 연구", 2002년도 종합학술대회논문집, Vol. II, 2002, pp. 839-842.
  7. 황정선, 조환기, "예비압입에 의한 알루미늄 2024-T3 알클래드 합금의 균열성장 지연거동", 한국군사과학기술학회지, 제4권, 제2호, 2001, pp. 42-51.
  8. Sam-Hong Song, and Jin-Ho Choi, "Fatigue Crack Retardation by Indentation," Proceedings of Asian Pacific Conference for Fracture and Strength '96, 1996, pp. 57-61.
  9. M. Goto, H. Nisitani, H. Miyagawa, A. Miura, and K. Imado, "Effect of indentation on the Fatigue Strength of Plate Specimens with a Central Notch," 일본기계학회논문집(A편), Vol. 57, No. 544, 1991, pp. 2873-2878.
  10. M. Goto, H. Nisitani, H. Miyagawa, and K. Imado, "Effect of Indentation on the Fatigue Strength of Plate Specimens with a Crack," 일본기계학회논문집(A편), Vol. 56, No. 526, 1990, pp. 1348-1353.
  11. H. Miyagawa, and H. Nisitani, "Retardation of Fatigue Crack Propagation due to Additional Holes or indentations in Plate Specimens," Bulletin of JSME, Vol. 28, 1985, pp. 2219-2223. https://doi.org/10.1299/jsme1958.28.2219
  12. D. B. Marshall, "Geometrical Effects in Elastic/Plastic Indentation," Journal of American Ceramic Society, Vol. 67, 1984, pp. 57-60. https://doi.org/10.1111/j.1151-2916.1984.tb19148.x
  13. E647-95, "Standard Method for Measurement of Fatigue Crack Growth Rates," American Society of Testing and Materials, 1995, Philadelphia.