• Title/Summary/Keyword: dual-polarized

Search Result 111, Processing Time 0.027 seconds

A Study on Design of Dual-Polarized Microstrip Patch Antenna Using RFID (RFID용 이중편파 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Park, Sang-Joo;Choi, Yong-Seok;Park, Byeong-Ho;Park, Chan-Hong;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.229-232
    • /
    • 2010
  • 본 논문에서는 900MHz대역의 대각선 슬롯형 마이크로스트립 패치 안테나를 설계하였다. 제안한 마이크로스트립 패치안테나는 안테나 크기, 절단 길이, 급전위치, 공기층의 높이 등과 같은 중요 파라미터를 고려하여 설계하였다. 설계한 마이크로스트립 패치안테나는 915MHz에서 최소의 반사손실을 가지며, 반사손실을 -16dB 이하에서 정재파비가 1.2이하일 경우, 약 26MHz의 대역폭을 확보함을 알 수 있다. 또한, 설계한 대각선 슬롯형 마이크로스트립 패치 안테나는 915MHz 중심주파수 대역에서 이득이 6dB이고, 축비가 2.8dB 되어 우수한 특성을 갖는다.

  • PDF

Microstrip Antenna for SAR Applications with Microwave Composite Laminates and Honeycomb Cores (복합재료 하니콤 샌드위치 판넬을 이용한 SAR 시스템용 마이크로스트립 안테나 개발)

  • 유치상;이라미;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.195-198
    • /
    • 2000
  • Microstrip antenna for SAR applications is designed with microwave composite laminates and Nomex honeycomb cores, which becomes an aircraft's structural panel. This study demonstrated fabrication, design procedures and structural and electrical performances of complex antenna system presented. For validating structural rigidity, 3-point bending test is performed, and simulation results for the complex antenna array are compared with measurements for its electrical performance. The results show that this antenna system can be applied in dual polarized synthetic aperture radar and has a good flexural stiffness with comparison of previous sandwich constructions.

  • PDF

A Broadband W-band Orthomode Transducer for KVN Polarization Observations

  • Chung, Moon-Hee;Je, Do-Heung;Kim, Seung-Rae
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.345-353
    • /
    • 2013
  • A W-band Orthomode Transducer (OMT) has been developed for Korean VLBI Network (KVN) polarization observation. The OMT design was based on E-plane split-block technique using septum structure. 3-dimensional electromagnetic simulation was fully employed to optimize the performance of the OMT. Measurements of the fabricated OMT show that the return losses for the vertically and horizontally polarized modes are better than -20 dB across 80 ~ 108 GHz and the insertion losses for the both modes are less than 0.47 dB. The cross-polarization level of the OMT is less than -30 dB. The bandwidth of the developed OMT is estimated as around 30%.

Selection Technique of Filter based on Analysis for Variables of Dual Polarized Radar (이중편파레이더 변수 분석 기반 필터 선정 기법)

  • Lee, Keon Haeng;Lim, Sanghun;Jang, Bong Joo;Hyun, Myung Suk;Lee, Dong Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.517-517
    • /
    • 2015
  • 레이더에 수신된 신호는 신호처리기를 통해 자료의 해석시 불필요한 지형에코를 제거하는 과정을 거친다. 신호처리기의 필터는 레이더의 기종에 따라 다르나, 일반적으로 도플러 속도나 스펙트럼 폭의 값에 따라 지형에코를 제거하며, 이 값들에 따라 번호를 부여하여 필터를 선택적으로 이용할 수 있도록 되어 있다. 본 연구에서는 국토교통부에서 운영하고 있는 비슬산 강우레이더와 소백산 강우레이더의 필터번호에 따른 반사도의 빈도 영역 그래프, 반사도-차등반사도의 빈도 산포도, 반사도와 차등반사도의 평균 및 표준편차를 통해 적정 필터를 선정하고자 하였다. 이 때, 지형에코와 기상에코의 제거 정도 확인을 위해 레이더 관측반경 50 km를 기준으로 비교를 수행하였다. 그 결과, 1번 필터 이후에는 필터에 따른 큰 변화가 없어 1번 필터를 사용하는 것이 기상에코를 보존하면서 지형에코를 제거하는 효과가 가장 좋은 것으로 판단되었다.

  • PDF

Design of Dual-Polarization Antenna with High Cross-Polarization Discrimination (높은 교차편파 분리도를 가지는 이중편파 안테나 설계)

  • Lee, Sang-Ho;Oh, Taeck-Keun;Ha, Jung-Je;Lee, Yong-Shik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • In a small cell base station used in densely populated areas, a dual polarized multiple antenna(MIMO) is mainly used to increase the cell capacity. This paper demonstrates a dual-polarization antenna with high cross-polarization discrimination(XPD) that can improve the capacity of a small cell using a dual polarization multiple antenna (MIMO). By using the symmetric structure and differential feeding, high XPD in all directions is achieved. In addition, a very similar radiation pattern is observed between each polarization. Because of high XPD and similar radiation pattern in all directions, proposed antenna is well adopted for small-cell multiple-input multiple-output(MIMO) system. Experimental results shows that the proposed antenna has a bandwidth of 180 MHz (2.51~2.7 GHz), a maximum gain of 4.5 dBi (3.5~4.5 dBi), and a half-power beam width of 85 degrees. In addition, average XPD of 26.4 dB in all directions, more than 13.8 dB increase than previous dual-polarization antennas which use single emitter by using different feeding or selectively use polarization through switching.

The Antenna Design for Korea SAT-5 Satellite Communication in Ka-band (무궁화 5호 위성통신용 Ka대역 안테나 설계)

  • Kim, Chun-Won;Cheong, Chi-Hyun;Kim, Kun-Woo;Lee, Seong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.90-97
    • /
    • 2014
  • In this paper, we have designed the antenna for Korea SAT-5 Satellite Communication which can use Ka band in the earth station. The antenna structure consist of the the dual-offset gregorian reflector that has high gain and efficiency, the corrugated horn that has symmetric radiation patterns and low side lobe levels, the iris polarizer that make circular polarization and the OrthoMode Transducer that separate transmitting and receiving signals. The designed antenna gain is more than 45.7dBi in Tx-band which use LHCP and 42.0dBi in Rx-band which use RHCP. The co-polarized and cross-polarized radiation pattern comply with ITU-R S.580-6 and S.731-1 that are recommended by International Telecommunication Union in the geostationary satellite. The Axial ratio is less than 1.0dB in Tx-band and 1.5dB in Rx-band that meet MIL-STD-188-164A.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

Development of a 85~115 GHz 90-Deg Phase Shifter Using Corrugated Square Waveguide (Corrugated 정사각형 도파관 구조를 이용한 85~115 GHz 90도 위상천이기 개발)

  • Chung, Moon-Hee;Je, Do-Heung;Han, Seog-Tae;Kim, Seung-Rae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1215-1218
    • /
    • 2013
  • A 90-deg phase shifter using corrugated square waveguide structure for 86 GHz band VLBI(Very Long Baseline Interferometry) dual-circular polarization observation has been developed. The 90-deg phase shifter was designed to have two corrugated walls inside the square waveguide so that the vertically and horizontally polarized waves at the output port have phase differences of $90{\pm}3.3$ deg across 85~115 GHz. Measurements show that the return and insertion losses for the both polarizations are better than 17 dB and 0.25 dB, respectively. The axial ratio is estimated to be less than 0.6 dB within the required frequency band.

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF