• Title/Summary/Keyword: dual-frequency

Search Result 1,198, Processing Time 0.032 seconds

Frequency range expansion of pneumatic exciter by using dual-chamber (이중챔버를 이용한 공압 가진기의 주파수 범위 확장)

  • Park, Young-woo;Kim, Kwang-joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.815-824
    • /
    • 2013
  • Pneumatic exciters can be good replacements of electrodynamic, piezoelectric and hydraulic exciters owing to simple structure and large exciting force. One problem to be solved is a slow response caused by compressibility of air. Desirable frequency response characteristics of exciter are constant magnitude and zero degree phase, because users want no time delay between input signal and output force. For this reason, frequency range of pneumatic exciters is limited about 0~1 Hz. Therefore, expansion of frequency range is an important issue when designing the pneumatic exciter. In this paper, the pneumatic exciter which has same structure with active pneumatic isolator is dealt with. The dynamic characteristics are presented, and its limitation of expanding frequency range is shown based on analytical studies. Then the pneumatic exciter with dual-chamber is suggested to overcome this problem. Based on simulation study, a design method is presented.

  • PDF

A 2.4 /5.2-GHz Dual Band CMOS VCO using Balanced Frequency Doubler with Gate Bias Matching Network

  • Choi, Sung-Sun;Yu, Han-Yeol;Kim, Yong-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • This paper presents the design and measurement of a 2.4/5.2-GHz dual band VCO with a balanced frequency doubler in $0.18\;{\mu}m$ CMOS process. The topology of a 2.4 GHz VCO is a cross-coupled VCO with a LC tank and the frequency of the VCO is doubled by a frequency balanced doubler for a 5.2 GHz VCO. The gate bias matching network for class B operation in the balanced doubler is adopted to obtain as much power at 2nd harmonic output as possible. The average output powers of the 2.4 GHz and 5.2 GHz VCOs are -12 dBm and -13 dBm, respectively, the doubled VCO has fundamental harmonic suppression of -25 dB. The measured phase noises at 5 MHz frequency offset are -123 dBc /Hz from 2.6 GHz and -118 dBc /Hz from 5.1 GHz. The total size of the dual band VCO is $1.0\;mm{\times}0.9\;mm$ including pads.

Analysis of Wireless Signal Strength in Indoor Environment with Film-Type Dual-Band Frequency Selective Structure (필름형 이중 대역 주파수 선택 구조가 적용된 실내 환경의 무선신호강도 분석)

  • Cho, Sung-Sil;Lee, Sang-Hwa;Yoon, Sun-Hong;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, we propose a film-type dual-band frequency selective structure for improving the wireless communication environment in a building. The proposed frequency-selective structure is a miniaturized structure that can control the resonant frequencies of 2.4 GHz and 5 GHz dual band through simple design parameters. We fabricated the frequency-selective surface by screen printing using conductive ink on a thin transparent film and confirmed its performance by measurement. We analyzed the attenuation performance of the unnecessary signal from the outside when the frequency-selective structure designed using the software to analyze the propagation environment performance is applied to the building. To verify the analytical results, the signal strength of the indoor environment was measured by applying the frequency-selective film fabricated on the inner wall of the actual building. The measurement results show that the dual-band frequency-selective film has 29.4 dB and 15.94 dB attenuation performance in the 2.4 GHz and 5 GHz, respectively.

The Dual-frequency (20/40 kHz) Ultrasound Assisted Photocatalysis with the Active Carbon Fiber-loaded Fe3+-TiO2 as Photocatalyst for Degradation of Organic Dye

  • Xiong, Shaofeng;Yin, Zhoulan;Zhou, Yuanjin;Peng, Xianzhong;Yan, Wenbin;Liu, Zhixiong;Zhang, Xiangyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3039-3045
    • /
    • 2013
  • Dual-frequency ultrasound assisted photocatalysis (DUAP) method was proposed to degrade a stable organic model effluent, cresol red (CR), using the prepared $Fe^{3+}$-doped $TiO_2$ with active carbon fiber loading ($Fe^{3+}-TiO_2/ACF$) as photocatalyst. The influence of key factors, including Fe doping amount and power density of dual-frequency ultrasounds (20/40 kHz), on the degradation efficiency was investigated. The degradation efficiency rises to 98.7% in 60 min accompanied by the color removal of CR liquid samples from yellow to colorless transparent at optimal conditions. A synergy index of 1.40 was yielded by comparison with single ultrasound assisted photocatalysis (SUAP) and the photocatalysis without ultrasound assisted (UV/$TiO_2$), indicating that a clear synergistic effect exists for the DUAP process. Obvious enhancement of degradation efficiency for the DUAP process should be attributed to production of large amount of free radicals by strong cavitational effects of dual ultrasounds.

Harmonic Suppressed Dual-Band Bandpass Filter with Independently Tunable Center Frequencies and Bandwidths

  • Chaudhary, Girdhari;Jeong, Yongchae;Lim, Jongsik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.93-103
    • /
    • 2013
  • This paper presented a novel approach for the design of a tunable dual-band bandpass filter (BPF) with independently tunable passband center frequencies and bandwidths. The newly proposed dual-band filter principally comprised two dual-mode single band filters using common input/output lines. Each single BPF was realized using a varactor-loaded transmission line resonator. To suppress the harmonics over a broad bandwidth, a defected ground structure was used at the input/output feeding lines. From the experimental results, it was found that the proposed filter exhibited the first passband center frequency tunable range from 1.48 to 1.8 GHz with a 3-dB fractional bandwidth (FBW) variation from 5.76% to 8.55%, while the second passband center's frequency tunable range was 2.40 to 2.88 GHz with a 3-dB FBW variation from 8.28% to 12.42%. The measured results of the proposed filters showed a rejection level of 19 dB up to more than 10 times the highest center frequency of the first passband.

A Dual-Output Integrated LLC Resonant Controller and LED Driver IC with PLL-Based Automatic Duty Control

  • Kim, HongJin;Kim, SoYoung;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.886-894
    • /
    • 2012
  • This paper presents a secondary-side, dual-mode feedback LLC resonant controller IC with dynamic PWM dimming for LED backlight units. In order to reduce the cost, master and slave outputs can be generated simultaneously with a single LLC resonant core based on dual-mode feedback topologies. Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM) schemes are used for the master stage and slave stage, respectively. In order to guarantee the correct dual feedback operation, Phased-Locked Loop (PLL)-based automatic duty control circuit is proposed in this paper. The chip is fabricated using $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology, and the die size is $2.5mm{\times}2.5mm$. The frequency of the gate driver (GDA/GDB) in the clock generator ranges from 50 to 425 kHz. The current consumption of the LLC resonant controller IC is 40 mA for a 100 kHz operation frequency using a 15 V supply. The duty ratio of the slave stage can be controlled from 40% to 60% independent of the frequency of the master stage.

Design and Fabrication of Low Phase-Noise Frequency Synthesizer using Dual Loop PLL for IMT-2000 (이중루프 PLL을 이용한 IMT-2000용 저위상잡음 주파수합성기의 설계 및 제작)

  • 김광선;최현철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop). For improving phase noise characteristic Voltage Controlled Oscillator was fabricated using coaxial resonator and eliminated frequency divider using SPD as phase detector and increased open loop gain. Fabricated frequency synthesizer had 1.82㎓ center frequency, 160MHz tuning range and -119.73㏈c/Hz low phase noise characteristic.

  • PDF

Dual-Band Stop Filter Using Metamaterial TLs (Metamaterial 전송선을 이용한 이중 대역 저지 필터)

  • Oh, Hee-Seok;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.124-128
    • /
    • 2009
  • This raper proposes a dual-bandstop filter, which is based on a metamaterial transmission line using the composite right/left-handed (CRLH) and dual composite right/left-handed (D-CRLH) structures. The metamaterial structure is used for miniaturization and dual-bandstop operation at the TDMB frequency range (195 MHz) and DVB-T/H frequency range (670 MHz). The size of the proposed filter is $30{\times}15\;mm$, and the -10 dB bandstop fractional bandwidth is approximately 73 % and 50 % at each frequency, respectively.

Design of a Ku-band TE113 Dual-mode Cavity Resonator Filter (Ku-band TE113 Dual-mode 공동 공진기 필터의 설계)

  • 김상철;한이두;홍의석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1229-1235
    • /
    • 1995
  • In this paper an elliptic response dual-mode 4-pole bandpass filter was designed, manu-factured, and tested. A dual-mode filter having two stages cascaded double-tuned cavities which are resonant in two independent orthogonal TE113 circular-cavity modes and provide a bandpass response. A 4-pole dual-mode elliptic function bandpass filter has a center frequency of 14.022 GHz with a bandwidth of 36 MHz which is the first channel of the KOREASAT up-link frequency. The measured experimental results of a dual-mode filter are 1 dB insertion loss in the passband and 20 dB out-of-rejection.

  • PDF

Design of a Dual band CMOS Frequency Synthesizer for GSM and WCDMA (GSM / WCDMA 통신용 이중대역 CMOS 주파수 합성기 설계)

  • Han, Yun-Tack;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.435-436
    • /
    • 2008
  • This paper presents a dual band frequency synthesizer for GSM and Wideband CDMA which is designed in a standard 0.13um CMOS 1P6M process. The shared components include phase frequency detector (PFD), charge pump (CP), loop filter, integer frequency divider(128/129 DMP, 4bit PC, 3bit SC) and Low noise Ring-VCO. A high-speed low power dual modulus prescaler is proposed to operate up to 2.1GHz at 3.3V supply voltage with 2mW power consumption by simulation. The simulated phase noise of VCO is -101dBc/Hz at 200kHz offset frequency from 1.9GHz.

  • PDF