• Title/Summary/Keyword: dual polarization

Search Result 248, Processing Time 0.032 seconds

A study on the Properties of RF-DC Conversion Efficiency for the Dual-Polarization (이중편파 정류안테나의 RF-DC 변환효율 특성 분석)

  • 유동기;박양하;김관호;이영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.435-442
    • /
    • 2000
  • In this paper, we analyzed RF-DC conversion efficiency for the dual -polarization rectenna and the antenna position changing. Dual-Polarization rectenna consist of a two major parts, receiving antenna and rectifying circuits. We made dual-polarization 2.45GHz rectenna using the two dipole antennas and patch antenna. Rectifying circuit is consisted by a Schottky-Barrier diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for the each of designed dual-polarization rectenna has 69.1% with 360$\Omega$(dipole type) and 75.4% with 340$\Omega$(patch type ) optimum load resistor. When the each of dual-polarization rectenna has optimal load resistor, it's conversion efficiency shows of $\pm$20% in dipole type and $\pm$5 in patch type at 0~180。position.

  • PDF

A Study on the Characteristics of Microstrip Patch Antenna with Slot/T-Slot Capacitive Coupling (슬롯/T-슬롯 커패시티브 커플링을 이용한 마이크로스트립 패치 안테나의 특성 연구)

  • Seo, Ki-Won;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1282-1288
    • /
    • 2010
  • This paper proposes a novel microstrip patch antenna to make impedance matching possible by using slot/T-slot capacitive coupling between the patch and 50 $\Omega$ feed line on a ground plane. The single band/linear polarization patch antenna shows linear polarization at 2.4 GHz band. Under -10 dB return loss, the single band/linear polarization patch antenna obtains 50 MHz bandwidth at 2.37 GHz~2.42 GHz. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth at 2.23~2.57 GHz and 375 MHz bandwidth at 2.95~3.325 GHz.

ITS/DSRC Frequency Reuse Method using XPIC (XPIC를 이용한 ITS/DSRC 주파수 재사용 기법)

  • 양완철;강경구;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.916-923
    • /
    • 2002
  • In this paper, we propose dual-polarization technique which double the system capacity without increasing any other bandwidth. In theory, dual-polarization technique can double system capacity by using an orthogonal electromagnetic wave. However, cross-polarization interference and multipath interference degrade system performance in practice. To cope with this problem, we propose Cross Polarization Interference Canceller(XPIC) for ITS/DSRC system which can mitigate the XPI as well as multipath propagation interference. We also analyze and discuss its performance with relevant computer simulation results.

Runoff Analysis Using Dual Polarization RADAR and Distributed Model (이중편파 레이더강우와 분포형 모형을 이용한 유출해석)

  • Jeong, Jiyoung;Yu, Myungsu;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.801-812
    • /
    • 2014
  • In this study, average rainfall of basin was estimated and compared with that obtained from Biseulsan dual polarization RADAR. And the runoffs are estimated using Vflo distribution model for Habcheon reservoir basin and Huicheon basin. In the rainfall estimation using dual polarization RADAR, the rainfall was estimated by using the specific phase difference and differential reflectivity of dual polarization RADAR variables. As a result, for all events rainfall estimation using dual polarization RADAR has the closest value to the gauge rainfall in terms of the peak rainfall and total rainfall. Also, runoff simulation results from dual polarization RADAR show the better results. It is concluded that the method using dual polarization radar can improve the accuracy more than a single polarization radar using only horizontal reflectivity.

Design of a Rectenna Using Dual Band/Dual Polarization Microstrip Patch Antenna (이중대역/이중편파 패치 안테나를 이용한 렉테나 설계)

  • Seo, Ki-Won;Kim, Jung-Han;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2268-2272
    • /
    • 2010
  • This letter presents that a rectenna can utilize more stable wireless power by using a new design dual band/dual polarization microstrip patch antenna and 2 stage voltage multiplier at 2.4 GHz band and 3.1 GHz band. The proposed antenna is a new microstrip patch antenna design to make impedance matching possible by using slotted capacitive coupling between the patch and $50\Omega$ feed line on a ground plane. Its advantage is that the size of the rectenna can be reduced by using $50\Omega$ feed line on the ground plane, which can be used efficiently. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth as 2.23~2.57 GHz and 375 MHz bandwidth as 2.95~3.325 GHz. Also, 2 Stage Voltage multiplier is possible to operate at 2.4 GHz band and 3.1 GHz band. The designed retenna can usually obtain wireless power at both 3.1 GHz band, and 2.4 GHz band applications such as Wi-Fi, Bluetooth, Wireless LAN, etc. So more stable wireless power can be utilized at the same time.

Capacity Gain of Polarization Aligned Dual-Polarized Antenna Systems (이중 편파 안테나의 편파 정렬에 의한 전송 용량 이득)

  • Wang, Hanho;Noh, Gosan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.92-95
    • /
    • 2015
  • Capacity reflecting effects of quantized feedback information is evaluated through computer simulation for practical implementation of polarization angle estimation and compensation. In the dual-polarization antenna case, evaluated capacity values varies more than four times depending on accuracy of the polarization angle estimation and compensation. Using 6-bit the quantized feedback information, we can achieve 96.8 percentage of the capacity of the perfect feedback information case.

Outage Probability Analysis of Dual-Polarized Antenna System (이중 편파 안테나시스템의 오수신 확률 분석)

  • Wang, Hanho;Noh, Gosan;Bahng, Seungjae;Park, Youn Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.771-773
    • /
    • 2014
  • Dual-polarization antenna system has been being researched for wireless communications under short range line-of-sight channel environments. In this paper, probability density function of signal-to-interference-ratio(SIR) for the dual-polarization antenna system is derived, and SIR outage is analyzed. It is shown that the upper bound capacity of a dual-polarization antenna system without polarization alignment is 4.5324 bps/hz.

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

A Study on the Design of Cross-Polarization Interference Canceler for Digital Radio Relay System with Co-Channel Dual Polarization (동일 채널 이중편파를 적용하는 디지털 무선 중계장치의 직교편파간섭제거기 설계에 관한 연구)

  • 서경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.225-236
    • /
    • 2002
  • In this paper, to counteract a cross-polarization interference caused by co-channel dual polarization technique of digital radio relay system(DRRS), we analyze the theoretical model and digital design of cross-polarization interference canceller(XPIC). In addition a complex adaptive time domain equalizer(ATDE) is designed using a finite impulse response filter, and the structure of XPIC and its control method are also illustrated including ATDE. Our computer simulation shows that about 25 dB signature and more than 23 dB XPIC improvement factor can be obtained with XPIC and ATDE. In order to verify the operation of designed XPIC, we review the simulated results in view of tap number, algorithm convergence, system signature, and XPlC improvement factor in connection with 64-QAM DRRS with co-channel dual polarization.

Portable Metamaterial Structure Antenna for Dual-Band and Polarization-Reconfigurability

  • Lee, Changhyeong;Han, Dajung;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • This paper presents the design of a palm-sized metamaterial antenna system having reconfigurable polarization as well as dual-band characteristics. Basically, three antennas are laid by 45 degrees in order and excited by a compact metamaterial dual-band power-divider of the in-phase outputs, and the radiated fields of the antennas are mixed to turn the vector of the polarization to another. The validity of the proposed method is verified by observing the in-phase outputs from the odd-numbered power-dividing device for both 900 MHz and 2.4 GHz, and checking the changeable polarization with the antenna gain over 2 dBi for all the polarizations.