• Title/Summary/Keyword: dual inverter

Search Result 146, Processing Time 0.023 seconds

Inverter for Induction Heating using Simultaneous Dual-Frequency Method (동시 이중주파수 구동을 이용한 유도가열용 인버터)

  • Shin, Woo-Seok;Park, Hee-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.554-560
    • /
    • 2011
  • Single-frequency induction heating equipment caused by a hardening heat treatment process of the double investment in the issue and allow the heat treatment process in order to shorten the time from one process to work simultaneously on two kinds of processes that allow Simultaneous Dual Frequency(SDF) drive scheme technology are described. In this paper, we propose a dual way to drive a simultaneous dual-frequency drive scheme has been implemented. Through simulations and experiments, we can obtain the validity of the proposed inverter for dual-frequency control and power control.

Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter (듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기)

  • Lee, Sang-Wook;Ryu, Yeoi-Joung;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

Resonance Suppression using Sensorless Control of Dual SPMSMs Fed by Single Inverter

  • Eom, Jae-Boo;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2376-2384
    • /
    • 2018
  • To reduce the size and cost of motor driving systems, several methods for driving multiple parallel-connected motors with a single inverter have been proposed. However, dual PMSMs driven by a single inverter, unlike induction motors, have a problem with instability due to system resonance caused by disturbances such as load imbalance and tolerances between two motors. To drive dual SPMSMs fed by a single inverter, this paper proposes an active damping algorithm to effectively suppress resonance by using one-sided sensorless speed control and position difference estimation. By deriving rotor position difference from d-q current differences between two motors, the proposed method is affected less by position difference estimation errors and is simpler than dual sensorless position estimation.

High-Efficiency Dual-Buck Inverter Using Coupled Inductor (결합 인덕터를 이용한 효율적인 단상 듀얼-벅 인버터)

  • Yang, Min-Kwon;Kim, Yu-Jin;Cho, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.396-405
    • /
    • 2019
  • Single-phase full-bridge inverters have shoot-through problems. Dead time is an essential way of solving these issues, but it distorts the output voltage and current. Dual-buck inverters are designed to eliminate the abovementioned problems. However, these inverters result in switching power loss and electromagnetic interference due to the diode reverse-recovery problem. Previous studies have suggested reducing the switching power loss from diode reverse-recovery, but their proposed methods have complex circuit configurations and high system costs. To alleviate the switching power loss from diode reverse-recovery, the current work proposes a dual-buck inverter with a coupled inductor. In the structure of the proposed inverter, the current flowing into the original diode is divided into a new diode. Therefore, the switching power loss is reduced, and the efficiency of the proposed inverter is improved. Simulation waveforms and experimental results for a 1.0 kW prototype inverter are discussed to verify the performance of the proposed inverter.

Implementation of Dual Current Controller and Realtime Power Limiting Algorithm in Grid-connected Inverter during Unbalanced Voltage Conditions (전원 전압 불평형시 계통연계형 인버터의 유효전력 리플 억제를 위한 듀얼 전류제어기 구현과 출력 전력의 실시간 제한 알고리즘)

  • Song Seung-Ho;Kim Jeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • A power limiting algorithm is proposed for stable operation of grid-connected inverter in case of grid voltage unbalance considering the operation limit of inverter. During the voltage unbalance the control performance of Inverter. is degraded and the output power contains 120Hz ripple due to the negative sequence of voltage. In this paper, conventional dual sequence current controller is implemented to solve these problems using separated control of positive and negative sequence. Especially the maximum power limit which guarantees the maximum rated current of the inverter is automatically calculated as the instant grid voltage changes. As soon as the voltage recovers the proposed algorithm can return to the normal power control mode accomplishing low voltage ride through. Proposed algorithm is verifed using PSCAD/EMTDC simulations and tested experimentally at 4.4kW wind turbine simulator set-up.

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

Dual Active Clamp Forward(DACF) Inverter for LCD Backlight Drive Applications (LCD Backlight 구동 응용을 위한 고효율 Dual Active Clamp Forward(DACF) Inverter)

  • Shin, Yong-Saeng;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Sug-Chin;Kwon, Gi-Hyun;Lee, Hyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.268-270
    • /
    • 2007
  • LCD Backlight 구동 응용을 위한 새로운 인버터 회로 Topology인 Dual Active Clamp Forward (ACF) Inverter를 제안한다. 제안된 회로는 LCD의 광원 역할을 하는 냉음극 형광램프(Cold Cathode Fluorescent Lamp, CCFL) 구동을 위한 회로로서, 넓은 입력 범위 및 부하 범위에서도 영 전압 스위칭 동작을 보장하며, 출력 AC 전류의 대칭성을 보장한다. 더욱이 기존 Symmetric Phase Shift Full Bridge방식은 특허 우선순위가 있는 방법으로써, Dual ACF Inverter를 사용할 경우 특허 Royalty 부담을 줄일 수 있다. 본 논문에서는 제안된 회로의 동작원리에 대한 타당성을 이론적 분석 및 모의실험을 통하여 검증한다.

  • PDF

Alleviate Current Distortion of Dual-buck Inverter During Reactive Power Support (듀얼벅 인버터의 무효전력 보상 시 전류 왜곡 저감)

  • Han, Sanghun;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • This study presents a method for reducing current distortion that occurs when a dual-buck inverter generates reactive power. Dual-buck inverters, which are only capable of unity power factor operation, can generate reactive power capabilities by modifying a modulation technique. However, under non-unity power factor conditions, current distortion occurs at zero-crossing points of grid voltage and output current. This distortion is caused by parasitic capacitors, dead-time, and discontinuous conduction mode operation. This study proposes a modified modulation method to alleviate the current distortion at zero-crossing point of the grid voltage. A repetitive controller is applied to reduce this distortion of the output current. A 1 kVA prototype is built and tested. Simulation and experimental results demonstrate the effectiveness of the proposed method.

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.