• Title/Summary/Keyword: dual CT

Search Result 145, Processing Time 0.024 seconds

The Clinical Value of Dual Time Point F-18 FDG PET/CT Imaging for the Differentiation of Colonic Focal Uptake Lesions (장관 내 국소 섭취증가 병소의 감별에 있어 추가 지연 F-18 FDG PET/CT의 임상적 유용성)

  • Kim, Jin-Suk;Lim, Seok-Tae;Jeong, Young-Jin;Kim, Dong-Wook;Jeong, Hwan-Jeong;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.309-316
    • /
    • 2009
  • Purpose: F-18 FDG can be accumulated in the liver, bowel, kidney, urinary tract, and muscles physiologically. The aim of this study was to evaluate the clinical value of dual time point 18F-FDG PET /8 imaging for the differentiation of the colonic focal uptake lesions. Materials and Methods: One hundred thirty two patients (M:F = 77:55, Age 62.8$\pm$11.6 years) underwent $^{18}$F-FDG PET/CT at two time points, prospectively: early image at 50-60 min and delayed image at 4-4.5 hours after the intravenous injection of $^{18}$F-FDG. Focally increased uptake lesions on early images but disappeared or shifted on delayed images defined a physiological uptake. For the differential evaluation of persistent focal uptake lesions on delayed images, colonoscopy and histopathologic examination were performed. SUVmax changes between early and delayed images were also compared. Results: Among the 132 patients, 153 lesions of focal colonic uptake were detected on early images of $^{18}$F-FDG PET/CT. Of these, 72 (47.1%) lesions were able to judge with physiological uptake because the focal increased uptake disappeared from delayed image. Among 81 lesions which was showed persistent increased uptake in delayed image, 61 (75.3%) lesions were confirmed as the malignant tumor and 14 (17.3%) lesions were confirmed as the benign lesions including adenoma and inflammatory disease. Remaining 6 (7.4%) lesions were confirmed as the physiological uptake because there was no particular lesion in the colonoscopy. In the malignant lesions, the calculated dual time point change for SUVmax ($\Delta$%SUVmax) was 20.8$\pm$18.7%, indicating a significant increase in SUVmax between the two point (p<0.01). In contrast, the change in SUVmax for the non-malignant lesions including benign lesions and physiological uptake was -13.7%$\pm$24.2%. For the differentiation of the malignant and non-malignant focal colonic uptake lesions, $\Delta$%SUVmax was the most effective parameter, and the cut-off value using -5% provided the best sensitivity, specificity, and accuracy. Conclusion: The dual time point $^{18}$F-FDG PET/CT imaging with SUVmax change evaluation could be an important noninvasive method for the differentiation of malignant and benign focal colonic uptake lesions including physiologic uptake.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

The Comparison of Quantitative Accuracy Between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images (SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Purpose In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. Thus, a wide range of scatter correction(SC) methods have been studied and this study is to evaluate the accuracy of CT based SC(CTSC) used in SPECT/CT as the comparison with existing energy window based SC(EWSC). Materials and Methods SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. In both conditions, Astonish(iterative : 4 subset : 16) reconstruction method and CT attenuation correction were commonly applied and three types of SC methods such as non-scatter correction(NSC), EWSC, CTSC were used in images filled with image. For EWSC, 9 sub-energy windows were set additionally in addition to main(=peak) energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air. Results Based on the image filled with air, %SF of images filled with water to which each SC method was applied is NSC 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the most scattering counts were removed in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest. Conclusion In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.

  • PDF

Correlation between Bone Mineral Density Measured by Dual-Energy X-Ray Absorptiometry and Hounsfield Units Measured by Diagnostic CT in Lumbar Spine

  • Lee, Sungjoon;Chung, Chun Kee;Oh, So Hee;Park, Sung Bae
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.5
    • /
    • pp.384-389
    • /
    • 2013
  • Objective : Use of quantitative computed tomography (CT) to evaluate bone mineral density was suggested in the 1970s. Despite its reliability and accuracy, technical shortcomings restricted its usage, and dual-energy X-ray absorptiometry (DXA) became the gold standard evaluation method. Advances in CT technology have reduced its previous limitations, and CT evaluation of bone quality may now be applicable in clinical practice. The aim of this study was to determine if the Hounsfield unit (HU) values obtained from CT correlate with patient age and bone mineral density. Methods : A total of 128 female patients who underwent lumbar CT for back pain were enrolled in the study. Their mean age was 66.4 years. Among them, 70 patients also underwent DXA. The patients were stratified by decade of life, forming five age groups. Lumbar vertebrae L1-4 were analyzed. The HU value of each vertebra was determined by averaging three measurements of the vertebra's trabecular portion, as shown in consecutive axial CT images. The HU values were compared between age groups, and correlations of HU value with bone mineral density and T-scores were determined. Results : The HU values consistently decreased with increasing age with significant differences between age groups (p<0.001). There were significant positive correlations (p<0.001) of HU value with bone mineral density and T-score. Conclusion : The trabecular area HU value consistently decreases with age. Based on the strong positive correlation between HU value and bone mineral density, CT-based HU values might be useful in detecting bone mineral diseases, such as osteoporosis.

The Preoperative Diagnosis of Thyroid Cancer in $^{18}F$-FDG PET/CT Dual Time Imaging of SUV and Evaluation of Radioactivity Measurement (갑상선암 수술 전 진단목적의 $^{18}F$-FDG PET/CT Dual Time Point영상에서 SUV값과 방사능 농도 측정법의 유용성 평가)

  • Lee, Hyun-Kuk;Khang, Hyun Soo;Yang, Seoung-Oh;Han, Man-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • Purpose : This study is designed to compare two parameters reflecting $^{18}F$-FDG uptake, SUV and radioactivity, for diagnosis of thyroid cancer in dual time $^{18}F$-FDG PET/CT imaging and to find which parameter is more useful to decide whether the tumor is malignant or not. Materials and Methods : We performed retrospective study for 40 patients. All patients are diagnosed as primary thyroid cancer and examined $^{18}F$-FDG PET/CT. First, we got the dispersion of scattering beam of neck and lung apex to set a background and compared each dispersion, mean value, standard deviation of maxSUV and radioactivity. Also, mean maxSUV, ${\Delta}maxSUV$, ${\Delta}maxBq$/ml(%) and radioactivity between groups according to lesion's size based on biopsy are compared with independent-sample t-test. Results : the values that were from maxSUV and radioactivity measurement technique were compensated and calculated to practical values for mean comparison and patients were divided to two groups based on tumor size, Group1 ($size{\leq}1$ cm, n=21), Group2 (size>1 cm, n=19) for accurate comparison. In Group1, maxSUV (semi-quantitative analysis) was increased from $5.64{\pm}5.85$ (1.89~17.84) at first image to $5.90{\pm}5.01$ (1.95~18.22) at second image and radioactivity (Bq/ml) (quantitative analysis) showed similar increase from $5.93{\pm}6.38$ (2.50~16.75) at first image to $6.01{\pm}5.25$ (2.66~16.58) at second image. In Group2, TFmaxSUV was $10.54{\pm}14.36$ (2.54~33.89) in true first image, TSmaxSUV was $9.85{\pm}12.88$ (2.62~26.20) in true second image separately. The maxSUV showed a significant difference in the mean comparison between the two groups (p=0.035) But, mean radioactivity (Bq/ml) was $5.93{\pm}6.38$ (4.81~40.99) in true first image, $6.01{\pm}5.25$ (4.51~36.93) in true second image and didn't show a significant difference statistically (p=0.126) Conclusion : In diagnosis of thyroid tumor, SUV and radioactivity depending on $^{18}F$-FDG uptake showed high similarity with coefficient of determination (R2=0.939) and malignant evaluation results using dual time also showed similar aspect. Radioactivity for evaluation of malignant tumor didn't show better specificity or sensitivity than maxSUV.

  • PDF

Computed tomographic anatomy of hepatic artery in normal beagle dogs

  • Kim, Soochan;Jeong, Seongmok;Lee, Heechun;Lee, Youngwon;Choi, Hojung
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.55-58
    • /
    • 2019
  • This study was performed to examine the visualization and anatomical variants of the hepatic artery with dual-phase computed tomography (CT) angiography and three-dimensional volume rendering imaging analysis in clinically normal dogs. Seven healthy beagle dogs were enrolled and underwent dual CT angiography. Arterial phase images could be obtained with multi-detector CT angiography using the fixed-scan method in these dogs. Contrast enhancement of the hepatic parenchyma was quite minimal because of the unique blood supply system of the liver. In most dogs, the main hepatic arterial branches were the right lateral branch, left branch, and right medial branch. Although hepatic arterial variation appears to be common in dogs, only one dog in this study had the caudate lobar branch as the first branch of the hepatic artery. Further study on a larger number of dogs with CT images will be needed to identify and classify the pattern of hepatic arterial variations.

Effect of Contrast-Enhanced $^{18}F$-FDG PET/CT on Measurements of Whole Body Bone Mineral Density and Body Composition by Dual-Energy X-Ray Absorptiometry (조영증강 $^{18}F$-FDG PET/CT가 이중에너지 X-선 흡수 계측법을 이용한 골밀도 및 체성분 측정에 미치는 영향)

  • Kim, Seong Su;Lee, Sun Do;Lee, Nam Ju;Shin, Yong Cheol;Mo, Eun Hee;Lee, Chun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.7-11
    • /
    • 2012
  • Purpose : The effect of concomitant use of $^{18}F$-FDG and intravenous contrast agent (CA) on dual-energy X-ray absorptiometry (DXA), was rarely reported. We had investigated these potentially confounding effects. Materials and Methods : Twenty-two patients had undergone DXA before and immediately after $^{18}F$-FDG PET/CT scans. Two DXA and 1 PET/CT scans had performed within one-day. $^{18}F$-FDG PET/CT scans had been performed with CA in 17 patients and without CA in 5 patients. Whole body bone mineral content (BMC), whole body bone mineral density (BMD), total fat mass (TFM), and lean body mass (LBM) were measured by DXA scanner before and after the $^{18}F$-FDG PET/CT scans. Results : BMC, BMD, TFM and LBM had significantly affected by $^{18}F$-FDG PET/CT with CA (BMC, +13.7%, from $2061.3{\pm}393.7$ to $2343.4{\pm}373.3$; BMD, +9.3%, from $1.07{\pm}0.09$ to $1.17{\pm}0.08$; TFM, -34.1%, from $17052.1{\pm}4049.9$ to $11237.1{\pm}2990.3$; LBM, +13.6%, from $45834.5{\pm}5662.1$ to $52094.0{\pm}6335.4$). However, $^{18}F$-FDG PET/CT without CA had no effect on the measurement of DXA (BMC, +2.4%, from $2197.7{\pm}391.6$ to $2251.5{\pm}380.9$; BMD, +1.8%, from $1.13{\pm}0.09$ to $1.15{\pm}0.07$; TFM, -6.8%, from $14585.6{\pm}3455.9$ to $13591.3{\pm}4351.4$; LBM, +2.2%, from $47360.5{\pm}8381.8$ to $48441.1{\pm}8488.1$). Conclusion : The measurements of DXA are affected by using CA. However, DXA scans might be unaffected by the presence of $^{18}F$-FDG administered for PET/CT.

  • PDF

A Performance Enhancement of Osteoporosis Classification in CT images (CT 영상에서 골다공증 판별 방법의 성능 향상)

  • Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1248-1259
    • /
    • 2016
  • Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

Comparison of the Quality of Various Polychromatic and Monochromatic Dual-Energy CT Images with or without a Metal Artifact Reduction Algorithm to Evaluate Total Knee Arthroplasty

  • Hye Jung Choo;Sun Joo Lee;Dong Wook Kim;Yoo Jin Lee;Jin Wook Baek;Ji-yeon Han;Young Jin Heo
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1341-1351
    • /
    • 2021
  • Objective: To compare the quality of various polychromatic and monochromatic images with or without using an iterative metal artifact reduction algorithm (iMAR) obtained from a dual-energy computed tomography (CT) to evaluate total knee arthroplasty. Materials and Methods: We included 58 patients (28 male and 30 female; mean age [range], 71.4 [61-83] years) who underwent 74 knee examinations after total knee arthroplasty using dual-energy CT. CT image sets consisted of polychromatic image sets that linearly blended 80 kVp and tin-filtered 140 kVp using weighting factors of 0.4, 0, and -0.3, and monochromatic images at 130, 150, 170, and 190 keV. These image sets were obtained with and without applying iMAR, creating a total of 14 image sets. Two readers qualitatively ranked the image quality (1 [lowest quality] through 14 [highest quality]). Volumes of high- and low-density artifacts and contrast-to-noise ratios (CNRs) between the bone and fat tissue were quantitatively measured in a subset of 25 knees unaffected by metal artifacts. Results: iMAR-applied, polychromatic images using weighting factors of -0.3 and 0.0 (P-0.3i and P0.0i, respectively) showed the highest image-quality rank scores (median of 14 for both by one reader and 13 and 14, respectively, by the other reader; p < 0.001). All iMAR-applied image series showed higher rank scores than the iMAR-unapplied ones. The smallest volumes of low-density artifacts were found in P-0.3i, P0.0i, and iMAR-applied monochromatic images at 130 keV. The smallest volumes of high-density artifacts were noted in P-0.3i. The CNRs were best in polychromatic images using a weighting factor of 0.4 with or without iMAR application, followed by polychromatic images using a weighting factor of 0.0 with or without iMAR application. Conclusion: Polychromatic images combined with iMAR application, P-0.3i and P0.0i, provided better image qualities and substantial metal artifact reduction compared with other image sets.