The Clinical Value of Dual Time Point F-18 FDG PET/CT Imaging for the Differentiation of Colonic Focal Uptake Lesions

장관 내 국소 섭취증가 병소의 감별에 있어 추가 지연 F-18 FDG PET/CT의 임상적 유용성

  • Kim, Jin-Suk (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital) ;
  • Lim, Seok-Tae (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital) ;
  • Jeong, Young-Jin (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital) ;
  • Kim, Dong-Wook (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital) ;
  • Jeong, Hwan-Jeong (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital) ;
  • Sohn, Myung-Hee (Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital)
  • 김진숙 (전북대학교 의학전문대학원 핵의학교실) ;
  • 임석태 (전북대학교 의학전문대학원 핵의학교실) ;
  • 정영진 (전북대학교 의학전문대학원 핵의학교실) ;
  • 김동욱 (전북대학교 의학전문대학원 핵의학교실) ;
  • 정환정 (전북대학교 의학전문대학원 핵의학교실) ;
  • 손명희 (전북대학교 의학전문대학원 핵의학교실)
  • Published : 2009.08.30

Abstract

Purpose: F-18 FDG can be accumulated in the liver, bowel, kidney, urinary tract, and muscles physiologically. The aim of this study was to evaluate the clinical value of dual time point 18F-FDG PET /8 imaging for the differentiation of the colonic focal uptake lesions. Materials and Methods: One hundred thirty two patients (M:F = 77:55, Age 62.8$\pm$11.6 years) underwent $^{18}$F-FDG PET/CT at two time points, prospectively: early image at 50-60 min and delayed image at 4-4.5 hours after the intravenous injection of $^{18}$F-FDG. Focally increased uptake lesions on early images but disappeared or shifted on delayed images defined a physiological uptake. For the differential evaluation of persistent focal uptake lesions on delayed images, colonoscopy and histopathologic examination were performed. SUVmax changes between early and delayed images were also compared. Results: Among the 132 patients, 153 lesions of focal colonic uptake were detected on early images of $^{18}$F-FDG PET/CT. Of these, 72 (47.1%) lesions were able to judge with physiological uptake because the focal increased uptake disappeared from delayed image. Among 81 lesions which was showed persistent increased uptake in delayed image, 61 (75.3%) lesions were confirmed as the malignant tumor and 14 (17.3%) lesions were confirmed as the benign lesions including adenoma and inflammatory disease. Remaining 6 (7.4%) lesions were confirmed as the physiological uptake because there was no particular lesion in the colonoscopy. In the malignant lesions, the calculated dual time point change for SUVmax ($\Delta$%SUVmax) was 20.8$\pm$18.7%, indicating a significant increase in SUVmax between the two point (p<0.01). In contrast, the change in SUVmax for the non-malignant lesions including benign lesions and physiological uptake was -13.7%$\pm$24.2%. For the differentiation of the malignant and non-malignant focal colonic uptake lesions, $\Delta$%SUVmax was the most effective parameter, and the cut-off value using -5% provided the best sensitivity, specificity, and accuracy. Conclusion: The dual time point $^{18}$F-FDG PET/CT imaging with SUVmax change evaluation could be an important noninvasive method for the differentiation of malignant and benign focal colonic uptake lesions including physiologic uptake.

목적: $^{18}$F-FDG PET/CT는 다양한 장관내 악성 종양을 발견하는데 높은 민감도를 보이고 있다. 하지만 $^{18}$F-FDG가 다양한 형태로 장관 내 생리적, 병리적 섭취증가를 보이기 때문에 그 특이도는 낮다. 이 연구는 장관 내 국소적인 $^{18}$F-FDG 섭취증가를 보일 때 생리적 섭취와 병리적 섭취를 감별하는 데 있어 추가 지연(dual time point) $^{18}$F-FDG PET/CT의 임상적 유용성을 알아보고자 하였다. 대상 및 방법: 2007년 1월부터 2008년 6월까지 장관 내 국소적인 섭취증가를 보여 추가 지연 촬영 $^{18}$F-FDG PET/CT를 실시한 132명(남:여=77:55, 나이 62.8$\pm$11.6세)을 대상으로 하였다. $^{18}$F-FDG 정맥 주사 후 50-60분 후에 조기 영상을 촬영하였고, 정맥 주사 후 4-5시간에 국소 섭취 증가 부위를 포함하고 있는 복부 부위에 대해 추가 지연 촬영을 실시하였다. 초기 영상에서 보였던 국소적 섭취가 지연 영상에서 보이지 않거나 이동하였을 경우에는 생리적 섭취증가로 간주하였고, 지연 영상에서 지속적으로 관찰되는 섭취증가에 대해서는 대장내시경과 병리조직 검사를 실시하였다. 지연 영상에서 지속적으로 관찰되는 장관 내 섭취에 대해서는 각각 Suvmax값과 조기 영상과 지연 영상의 Syvmax값의 차이($\Delta$%Suvmax)를 계산하였다. 결과: 132명의 환자에서 153개의 국소적 섭취증가병소를 관찰할 수 있었다. 이 중 72개 병소에서는 지연 영상에서 섭취 증가가 사라져 생리적 섭취로 판단할 수 있었다. 조기 영상에서만 보였던 생리적 섭취는 맹장을 포함한 오름 결장에서 가장 많이 관찰되었다. 지연 영상에서도 지속적으로 섭취증가를 보인 81개 병소에서 61개는 악성 종양으로 확진되었고, 14개는 양성 질환으로 확인 되었다. 나머지 6개의 병소는 대장내시경에서 특이소견을 보이지 않아 생리적 섭취로 확인되었다. 악성 종양은 $\Delta$%Suvmax가 20.8%$\pm$18.7%로 통계적으로 유의하게 증가하였고, 반대로 리 악성에서는 3.7%$\pm$24.2%로 감소하였다. 가장 유용한 진단적 가치를 주는 요소는 $\Delta$%Suvmax 임을 확인하였고, 악성과 비악성 질환을 감별하는데 임계수를 -5%로 정하였을 때 가장 좋은 민감도, 특이도, 정확도를 보였다. 결론: $^{18}$F-FDG PET/CT를 이용한 추가 지연 촬영은 생리적 섭취와 병리적 섭취를 감별하는데 있어 검사의 특이도를 높이고 불필요한 검사를 줄일 수 있는 유용한 비침습적 방법으로 생각된다.

Keywords

References

  1. Prabhakar HB, Sahani DV, Fischman AJ, Mueller PR, Blake MA. Bowel hot spots at PET-CT. Radioreaphics 2007;27:145-59 https://doi.org/10.1148/rg.271065080
  2. Israel O, Yefremov N, Bar-Shalom R, Kaqana O, Frenkel A. PET/CT detection of unexpected gastrointestinal foci of $^{18}$F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med 2005;46:758-62
  3. Zhuang H, Pourdehnad M, Lambright ES, Yammoto AJ, Lanuti M, Mozley PD, et al. Dual time point $^{18}$F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412-7
  4. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AT. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308-12
  5. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MA. A PET study $^{18}$F-FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22-30 https://doi.org/10.1007/s002590050355
  6. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point $^{18}$F -FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871-5
  7. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentineinduced inflammatory tissue. J Nucl Med 1995;36:1301-6
  8. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Kogire M, Doi R, et al. Delayed $^{18}$F -fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 2000;89:2547-54 https://doi.org/10.1002/1097-0142(20001215)89:12<2547::AID-CNCR5>3.0.CO;2-V
  9. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al. $^{18}F$-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med 2003;44:540-8
  10. Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Tsutsui K, Wakabayashi H, et al. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Commun 2005;26:895-901 https://doi.org/10.1097/00006231-200510000-00008
  11. Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002;224:783-7 https://doi.org/10.1148/radiol.2243011214
  12. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61-77 https://doi.org/10.1148/radiographics.19.1.g99ja0761
  13. Kim S, Chung JK, Kim BT, Kim SJ, Jeong JM, Lee DS, et al. Relationship between gastrointestinal F-18-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole-body PET. Clin Posit Imaging 1999;2:273-80 https://doi.org/10.1016/S1095-0397(99)00030-8
  14. Liang Y-C, Tang A-W, Xu H. Diagnostic value of $^{18}$F-FDG PET delayed imaging for patients with primary lung cancer. Chin J Nucl Med 2004;24:27-9
  15. Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A. Potential of dual time-point imaging to improve breast cancer diagnosis with $^{18}$F -FDG PET. J Nucl Med 2005;46:1819-24
  16. Nishivama Y, Yamamoto Y, Fukunaqa K, Kimura N, Miki A, Sasakawa Y. Dual-time-point $^{18}$F-FDG PET for the evaluation of gallbladder carcinoma. J Nucl Med 2006;47:633-8
  17. Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Nagai A, Ohnuki T, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with $^{18}$F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 2006;47:426-31
  18. Hubner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens S, et al. Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PETimages. Chin J Nucl Med 1996;21:941-9
  19. Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H. The value of dual time point $^{18}$F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol 2008;63:756-64 https://doi.org/10.1016/j.crad.2008.01.003
  20. Thie JA. Optimizing dual-time and serial positron emission tomography and single photon emission computed tomography scans for diagnoses and therapy monitoring. Mol Imaging Biol 2007;9:348-56 https://doi.org/10.1007/s11307-007-0111-6
  21. Rohren EM, Turking TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32 https://doi.org/10.1148/radiol.2312021185
  22. Jarritt PH, Carson KJ, Hounsell AR, Visvikis D. The role of PET/CT scanning in radiotherapy planning. Br J Radiol 2006;79:S27-35 https://doi.org/10.1259/bjr/35628509
  23. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 1996;23:1641-74 https://doi.org/10.1007/BF01249629