• 제목/요약/키워드: drying-shrinkage

검색결과 679건 처리시간 0.037초

초기재령 콘크리트의 부등건조수축과 자기수축에 관한 연구 (Differential Drying Shrinkage and Autogenous Shrinkage of Concrete at Early Ages)

  • 김진근;이칠성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.309-314
    • /
    • 1998
  • The moisture diffusion and self-desiccation cause the differential drying shrinkage and autogenous shrinkage at early ages, respecitvely. Thus total shrinkage strain includes the differential drying shrinkage and self-desiccation shrinkage. Thus in this study the shrinkage strain was measured at various positions in the exposed concrete and in the sealed concrete the self-desiccation shrinkage was measured. In low-strength concrete, the differential drying shrinkage increases very rapidly, but self-desiccation shrinkage is very small. But high-strength concrete shows the reverse result. And the analytical results for differential drying shrinkage were in good agreement with the test results.

  • PDF

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

고해, 니딩, 습부압착에 의한 HwBKP, SwBKP, OCC 수초지의 건조 거동 및 물성 변화 (Changes of HwBKP, SwBKP, OCC Handsheets' Drying Behavior and Physical Properties by Refining, Kneading and Wet Pressing)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.17-26
    • /
    • 2011
  • Drying behavior and physical properties of HwBKP, SwBKP, and OCC handsheets depending on kneading, refining and wet pressing were analyzed. The maximum drying shrinkage velocity was newly adopted to verify the effect of mechanical treatment of pulps by evaluating drying behavior according to varying the kneading, refining and wet pressing treatments. Those various treatments were changed to evaluate the relationship between the maximum drying shrinkage velocity and handsheets properties. When the drying shrinkage and the maximum drying velocity increased by refining and wet-pressing, handsheets strength was increased. The maximum drying shrinkage velocity showed higher correlation with physical properties of paper than WRV at different refining loads at SwBKP and mixed pulp. At high wet-web dryness, drying shrinkage, the maximum drying shrinkage velocity and strength properties of handsheet were increased. It meant that drying shrinkage behavior was highly affected by not only fibers' shrinkage but also fiber bonding. Kneading pre-treatment for KOCC and SwBKP effectively modified fiber properties and increasing paper strength and drying shrinkage. The effect of kneading pre-treatment was also confirmed by the maximum drying shrinkage velocity. Strength properties of mixed pulp handsheets were not increased by the kneading pre-treatment, although the maximum drying shrinkage velocity and WRV was increased. It meant that fibers network bonding of HwBKP was limited because of ves sels and ray cells' interference for bonding. Therefore in order to improve paper strengths containing HwBKP by mechanical treatments, interference of vessels and ray cells for fiber bondings should be carefully controlled.

건조수축 해석을 통한 종이의 벌크 및 강직성 향상 (Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구 (A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete)

  • 박도경;윤여완;김광서
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

잔골재 특성에 따른 콘크리트 건조수축 모델링에 관한 연구 (A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Properties of Aggregate)

  • 박도경;양극영
    • 한국건축시공학회지
    • /
    • 제6권1호
    • /
    • pp.73-77
    • /
    • 2006
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidify. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. As a result Strain Rate of Drying Shrinkage of concrete was measured to increase by average $10{\times}10^{-5}$ in proportion to additional 4% increase in fine aggregate ratio, when water/cement ratio constant. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. 6. Strain Rate of Drying Shrinkage in sea sand concrete increased $10%{\sim}15%$ higher than measured when in river sand. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as fellows. The coefficient of correlation of Drying Shrinkage in concrete was over 90%.

시멘트경화체의 건조수축균열에 미치는 혼화재의 영향 (Effect of Admixtures on Drying Shrinkage Crack of Hardened Cement Mortar)

  • 이승한;이종석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.229-233
    • /
    • 1995
  • In this study we have the properties of drying shrinkage crack of hardened cement mortar using admixtures. The drying shrinkage cracking test process has been examined by the restrained drying shrinkage strain by restraining rate measuring properties of strain-with- restraint by JIS original proposal and keeps a flow value of mortar about 100$\pm$5%. The results show that the usage of shrinkage reducing agent 1.5% was effective on the control of drying shrinkage in OPC and CP by restraining rate 20% and strain-with-restraing 20~30 $\mu$, the usage of expansion agent 0.45% was effective by restraining rate 50~60% and strain-with-restraint 40~80$\mu$, and the effectiveness was increased with shrinkage reducing agent. Also. admixtures such as Flyash, CP and NC reduced restrained shrinkage and drying shrinkage cracking and more with shrinkage reducing agent

  • PDF

혼화재 사용에 따른 고강도 콘크리트의 수축에 관한 실험적 연구 (An Experimental Study on Shrinkage of High Strength Concrete with Mineral Admixture)

  • 이영재
    • 한국산업융합학회 논문집
    • /
    • 제13권2호
    • /
    • pp.99-106
    • /
    • 2010
  • The effects of additive and shrinkage reducing agent on the drying and autogenous shrinkage of high strength concrete are investigated in this study. As results, when the ratio of W/B(low water to binder ratio) increase, the compressive strength is decreased. Comparing with PC(portland cement) concrete, the strength is 2.8%, 3.2% and 3.8% lower respectively than that of PC when concrete mixing ratio is 0.2%, 0.3% and 0.4% in 28 days curing. Drying shrinkage strain of PC concrete showed $-650{\times}10^{-6}$ in 91 days curing. When SR(shrinkage reducing agent) of 0.2%, 0.3% and 0.4% is mixed, the drying shrinkage strains are 21%, 34% and 41% lower than those of PC in 91 days curing. Autogenous shrinkage strain of PC concrete appeared $-480{\times}10^{-6}$ in 56 days curing. When SR of 0.2%, 0.3% and 0.4% is mixed, the autogenous drying shrinkage strain are 12.5%, 19.8% and 33.3% lower than those of PC in 56 days curing. In cases of using the mineral and shrinkage agent or only using a shrinkage reducing agent also appeared same reducing effects for drying shrinkage and autogenous shrinkage.

  • PDF

Influence of Shrinkage and Stretch During Drying on Paper Properties

  • Torbjorn Wahlstrom
    • 펄프종이기술
    • /
    • 제31권5호
    • /
    • pp.31-46
    • /
    • 1999
  • A drying paper strives to shrink due to the shrinkage of the individual paper fibres. Laboratory results show that a reduction of the shrinkage or an imposed stretch leads to a large increase in tensile stiffness and a large decrease in strain at break. In c cylinder drying section the water in the web is repeatedly heated on the drying cylinder and evaporated in the free draw. To evaluate the drying process regarding influence on paper properties these sub-processes, or drying phases, have to be studied separately. The effect of the conditions on the drying cylinder and on the VacRoll is investigated in pilot trails. Both the fabric tension on the drying cylinder and on the VacRoll reduces the shrinkage of the paper. The laboratory results are used as input to a numerical simulation of the conditions in the free draw. If the web width is increased or the length of the free draw is reduced the mean shrinkage of the paper web is reduced . However, the difference in shrinkage between the middle and the edge of the web is increased.

  • PDF

분말수축저감제를 이용한 제유화형 분말수지 혼입 폴리머 시멘트 모르터의 건조수축 저감효과 (Drying Shrinkage Reduction of Redispersible Polymer Powder-Modified Mortars Using Powdered Shrinkage-Reducing Agent)

  • 김완기;;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.231-236
    • /
    • 1998
  • In general, the drying shrinkage of polymer-modified mortars using redispersible polymer powders is much higher than that of unmodified mortar. The purpose of this study is to reduce the drying shringkage of polymer-modified mortars using a redispersible poly(ethylene-vinyl acetate) (EVA) powder, which is widely used for the manufacture of prepackaged-type polymer-modified mortar products at present. Polymer-modified mortars using the redispersible EVA powder with powdered shrinkage-reducing agent were prepared with various polymer-cement ratios and shrinkage-reducing agent contents, and tested for drying shrinkage and strength. From the test results, the drying shrinkage of the redispersible EVA powder-modified mortars with a powdered shrinkage agent is remarkably reduced with increasing shrinkage-reducing agent content, and becomes approximately a half of that of the redispersible EVA powder-modified mortars with the same polymer-cement ratios and without the shrinkage-reducing agent at a shrinkage-reducing agent content of 6%.

  • PDF