• Title/Summary/Keyword: drying time factor

Search Result 45, Processing Time 0.022 seconds

Relationship between Softwood Lumber Thicknesses and Drying Rate and Drying Time Factor in Vacuum-Press Drying (가열판 압체식 진공건조에서 침엽수 제재두께와 건조속도 및 건조시간계수의 관계)

  • Jung, Hee-Suk;Lee, Jun-Ho;Kang, Wook;Lee, Nam-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Red pine (Pinus densiflora), white pine (Pinus koraiensis), larch (Larix leptolepis) and Western hemlock (Tsuga heterophylla) lumber were vacuum-press dried under three drying schedules to investigate current moisture contents (MC), drying rates and drying time factors related to five lumber thicknesses of 3, 5, 7, 9 and 11cm. Current MC could be estimated by drying factors such as lumber thickness, initial Me and drying time. Average drying rate from 30% to 15% Me was the highest for Western hemlock below fiber satuartion point, red pine, white pine and larch in the order of their magnitude. Drying rate curvilinearly decreased as lumber thickness increased. Drying time factor curvilinearly increased as lumber thickness increased.

  • PDF

Changes in Absorbency and Drying Speed of a Quick-drying Knit Fabric by Repeated Laundering

  • Roh, Eui-Kyung;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.2062-2072
    • /
    • 2010
  • This research evaluates the change of the water absorbency and drying speed of a quick-drying knit fabric by repeated laundering and laundering conditions and investigates the influence of laundering conditions on the functional properties of the knit fabric. Four factors of laundering conditions were studied: detergent, water hardness, water temperature, and frequency of rotation. Knit fabrics were washed for 25 laundering cycles in a drum-type washing machine with nine different laundering conditions derived from an orthogonal array. The properties of knit fabrics were measured with a drop absorption test, a strip test, and a drying time test. Relaxation shrinkage pointed to a change in the structural characteristics of the knit fabric. Wetting time was faster and wickability was greater in the knit fabrics that underwent 5 laundering cycles; in addition, there were no obvious changes in wetting time and wickability. The detergent was the most important factor in wetting time (40.4%) and wickability (60% or above). Water hardness, water temperature and RPM had less of an effect on wetting time and wickability. There were no significant differences between the levels of laundering conditions (except for detergent) on wetting time and wickability. Drying times with neutral and alkali were slower by repeated laundering; however, there was no obvious change in drying time. Hardness, water temperature and RPM had less of an impact on drying time.

Effects of Freeze Dry Control Parameters on the Sublimation Drying Time of Garlic paste (동결건조 제어변수가 마늘의 승화건조시간에 미치는 영향)

  • Park, N.H.;Bae, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.2
    • /
    • pp.122-132
    • /
    • 1993
  • Effects of physical properties of garlic paste and freeze dry control parameters on the sublimation drying time were investigated to verify optimal operating method in freeze drying. A mathematical model of freeze drying by sublimation was suggested and used to estimate the drying time of garlic paste. Under various conditions, the drying time of garlic paste was calculated using the computer program for the suggested model. Among the physical properties of garlic paste, melting temperature was evaluated the most important factor in affecting the drying time. In supplying methods of the required heat energy for sublimation, it would be the best way to control the upper plate temperature and the lower plate temperature independently.

  • PDF

Optimization for drying process of red pepper (고추의 건조과정(乾燥過程) 최적화(最適化)에 관(關)한 연구(硏究))

  • Cho, Y.J.;Koh, H.K.;Park, J.B.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.4
    • /
    • pp.372-383
    • /
    • 1991
  • This study was performed to find out optimum drying conditions of red pepper to minimize energy consumption and drying time, respectively, under the quality constraint using Box's complex method. The results from this study are summarized as follows. 1. From the optimization results for the drying process, energy consumption was minimized at the drying condition to minimize drying time. 2. The optimization results according to drying method was found out to be greatly affected by the quality constraint of red pepper. Especially, the turning point to change drying stage was a very important factor in the drying method with two stages.

  • PDF

The Effects of Drying Conditions on the Germination Properties of Rapeseed (유채종자의 건조조건에 따른 발아특성)

  • Duc, Le Anh;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • This study was performed to determine the effect of drying conditions on the germination properties of rapeseed after seeds were dried under different drying conditions: $40^{\circ}C$, $50^{\circ}C$, or $60^{\circ}C$ in combination with 30%, 45%, or 60% relative humidity. As analytic results, drying conditions had significant effects (P-value < 0.001) and drying temperature was considered as the main factor on the germination properties of rapeseed. When drying temperature increased or relative humidity decreased, the vigor rate and germination rate decreased, the median germination time increased. The maximum values of vigor rate and germination rate were 90% and 95.44%, and their minimum values were 60.17 and 75%, respectively. To ensure the standard germination rate of 85%. The appropriate drying zone was determined and the drying temperature should be less than $51.0^{\circ}C$, $54.5^{\circ}C$ and $58.7^{\circ}C$ at 30%, 45% and 60% RH, respectively. The values for median germination time varied from 2 to 4 days. The predicted models of germination rate, vigor rate, and median germination time were determined.

Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

  • Lee, Yoon;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.155-159
    • /
    • 2012
  • Objectives: To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods: Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil $S^3$ Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results: All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil $S^3$ Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions: Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques

  • Gong, Yuan Juan;Sui, Ying;Han, Chung Su;Ning, Xiao Feng
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Purpose: This study was performed to improve the drying quality and drying rate of ginseng slices by combining microwave and far-infrared drying techniques. Methods: Based on single-factor experiments and analyses, a quadratic regression orthogonal rotation combination design was adopted to study the effects of the moisture content at the conversion point between the microwave and far-infrared techniques, the ginseng slice thickness and the far-infrared drying temperature on the chip drying time, the surface color difference value, the nutritional composition and the surface shrinkage rate index. Results: Compared to the far-infrared drying alone, the combined microwave and far-infrared drying resulted in an increase in the saponin content of the ginseng slices and reductions in the drying time, surface color difference, and shrinkage rate. Conclusions: We established a mathematical model of the relationships between the surface shrinkage rate index and the experimental factors using the multi-objective nonlinear optimization method to determine the optimal parameter combination, which was confirmed to be the following: microwave and far-infrared moisture contents of 65%, a ginseng slice thickness of 1 mm, and a far-infrared drying temperature of $54^{\circ}C$.

Drying Characteristics of Agricultural Products under Different Drying Methods: A Review

  • Lee, Seung Hyun;Park, Jeong Gil;Lee, Dong Young;Kandpal, Lalit Mohan;Cho, Byoung-Kwan;Hong, Soon-jung;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.389-395
    • /
    • 2016
  • Purpose: Drying is one of the most widely used methods for preserving agricultural products or food. The main purpose of drying agricultural products is to reduce their water content for minimizing microbial spoilage and deterioration reaction during storage. Methods: Although numerous drying methods are successfully applied to dehydrate various agricultural products with little drying time, the final quality of dried samples in terms of appearance and shape cannot be guaranteed. Therefore, based on published literature, this review was conducted to study the drying characteristics of various agricultural products when different drying methods were applied. Results: An increase in the drying power of sources-for example, increase in hot air temperature or velocity, infrared or microwave power-and the combination of drying power levels can reduce the drying time of various agricultural products. In addition, energy efficiency in drying significantly relies on the compositions of the dried samples and drying conditions. Conclusions: The drying power source is the key factor to control entire drying process of different samples and final product quality. In addition, an appropriate drying method should be selected depending on the compositions of the agricultural products.

KI Criteria of Surface Check under Stepwise Loadings of Drying Stresses

  • Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.51-56
    • /
    • 1999
  • Finite element method was utilized to analyze crack tip stress and displacement field under drying stress case as stepwise loading. Opening mode of single-edge-notched model was employed and analyzed by linear elastic fracture mechanics of plane stress case. The drying stresses were applied as stepwise loads at the boundary elements of the model with 10 steps of time serial. The stress intensity factor($K_I$) for opening mode reached to its maximum just prior to the stress reversal. The $K_I$ from the displacement fields revealed 1.7 times higher than those from stress fields. By comparing the two sets of $K_I$ from displacement and stress fields, single parameter $K_I$ showed its validity to characterize displacement fields around the crack tip front while stress field could not be characterized due to large variations between two sets of data.

  • PDF

Predicting drying shrinkage of steel reinforced concrete columns with enclosed section steels

  • Jie Wu;Xiao Wei;Xiaoqun Luo
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.539-550
    • /
    • 2023
  • Owing to the obstruction of section steel on the moisture diffusion in concrete, the existing shrinkage prediction models overestimate the time-dependent deformation of steel reinforced concrete (SRC) columns, particularly for the SRC columns with enclosed section steels. To solve this issue, this study deals with analytical and experimental studies on the drying shrinkage for this type of column. First, an effective method for predicting the drying shrinkage of concrete based on finite element model is introduced and two crucial parameters for simulation of humidity field are determined. Then, the drying shrinkage of SRC columns with enclosed section steels is investigated and two modified parameters, which depend on the ambient relative humidity and the ratio of section steel size to column size, are introduced to the B3 model. Finally, an experiment on the shrinkage deformation of SRC columns with enclosed section steels is conducted. Comparing the predicted results with the experimental ones, it demonstrates that the modified B3 model is quite reasonable.