• Title/Summary/Keyword: drying process

Search Result 1,286, Processing Time 0.027 seconds

Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates (균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향)

  • Park, Ji Yun;Kim, Seo Young;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.435-442
    • /
    • 2021
  • Mn-added Barium hexaaluminates were manufactured by homogeneous precipitation method using Urea. The effects of water wash and dry temperature were analyzed by thermal weight analysis, X-ray diffraction analysis, and scanning electron microscopy. Catalysts that went through the filtration step only produced pure hexaaluminate images compared to those that went through the water wash step. During the drying process, it seems that the remaining urea helps dehydration of the precursor and affects the phase shift of gibbsite to boehmite, which is easy to convert to pure hexaaluminate. The catalyst WO200 gave the best performance in the methane combustion reaction, and NOx was not emitted in the reaction for all catalysts. Hexaaluminates were found to affect reducing the highest CO emissions.

Effects of Aged Platycodon grandiflorum on Cyclophosphamide-induced Immunosuppression in Mice (홍도라지 추출물이 마우스 모델에서 Cyclophosphamide에 의한 면역력 저하 억제에 미치는 영향)

  • Lee, Eun Byeol;Choi, Ji-Hye;Jang, Hwan-Hee;Hong, Ha-Cheol;Lee, Hae-Jeung;Jeong, Hyun Cheol;Lee, Sung-Jin;Lee, Sung Hyen
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.340-348
    • /
    • 2020
  • This study was conducted to evaluate the immunomodulatory effects of red doraji (Platycodon grandiflorum, RD) prepared by repeated steaming and drying process in the immune-suppressed mice induced by pre (RD-A) or post-treatment (RD-B) with cyclophosphamide. The immune-stimulating effects of ethanol RD extract in in vivo at 150 (RD-1) and 300 mg/kg body weight (RD-2) for RD-A and RD-B groups were measured and compared to the NC group supplied with distilled water only or positive control group. After 14 days of oral supplement, serum IgA, IgG, and cytokine levels, splenocytes proliferation rate, NK cell activity, and gene expression of cytokines were measured as immune related biomarkers. Serum IgA, IgG, IL-1β, and IL-12 levels increased in both RD-A and RD-B groups while serum TNF-α level decreased in RD-A group compared to the NC group. Splenocytes proliferation rate, NK cell activity, and cytokine (IL-1β, IL-6, IFN-γ) expression levels were also improved by RD supplement in the both groups. The RD showed more significant immunomodulatory effects at higher dose (RD-2) rather than the lower dose (RD-1). Thus, RD has an immune efficacy in a dose dependent manner and can be used as an immune stimulating source to improve immunity.

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향)

  • Lee, Mihwa;Oh, Sohyeong;Park, Yujun;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.

Improvement of Particleboard Manufacturing Process and its Properties Using Powdered Tannin Adhesives (분말상 탄닌수지를 이용한 파티클보드 제조기술 및 물성개선)

  • Kang, Seog Goo;Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • This study was carried out to improve the properties of powdered tannin adhesive(PT) by adding liquid tannin resin(LT) to PT in the manufacture of particleboard. Mixing the LT to PT from 50% to 100% by weight did not show any difference in particleboard properties, but the higher the powdered tannin resin ratio, the lower the properties of the board. The proper ratio of PT to LT was 30:70 for the improvement of PT-particleboard, unless LT lower than 70%. Internal bonding strength was in proportional to the amount of LT. Mixing amino adhesives and PT did not show any improvements in mechanical and physical properties of the board but they only acted as scavenger for the free formaldehyde.Manufacturing particle board with the adhesive of 30:70 (PT:LT) and by using double blender resulted in high-performance products of E0 level of formaldehyde emission with high water resistance (U type; below 12%, M type; below 25%), as well as saving chip drying energy.

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling;Liu, Han;Zhu, Tianhui;Han, Shan;Li, Shujiang
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.215-231
    • /
    • 2021
  • Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

Improving the Viability of Freeze-dried Probiotics Using a Lysine-based Rehydration Mixture

  • Arellano, Karina;Park, Haryung;Kim, Bobae;Yeo, Subin;Jo, Hyunjoo;Kim, Jin-Hak;Ji, Yosep;Holzapfel, Wilhelm H.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • The probiotic market is constantly continuing to grow, concomitantly with a widening in the range and diversity of probiotic products. Probiotics are defined as live microorganisms that provide a benefit to the host when consumed at a proper dose; the viability of a probiotic is therefore of crucial importance for its efficacy. Many products undergo lyophilization for maintaining their shelf-life. Unfortunately, this procedure may damage the integrity of the cells due to stress conditions during both the freezing and (vacuum-) drying process, thereby impacting their functionality. We propose a lysine-based mixture for rehydration of freeze-dried probiotics for improving their viability during in vitro simulated gastric and duodenum stress conditions. Measurement of the zeta potential served as an indicator of cell integrity and efficacy of this mixture, while functionality was estimated by adhesion to a human enterocyte-like Caco-2 cell-line. The freeze-dried bacteria exhibited a significantly different zeta potential compared to fresh cultures; however, this condition could be restored by rehydration with the lysine mixture. Recovery of the surface charge was found to influence adhesion ability to the Caco-2 cell-line. The optimum lysine concentration of the formulation, designated "Zeta-bio", was found to be 0.03 M for improving the viability of Lactiplantibacillus plantarum Lp-115 by up to 13.86% and a 7-strain mixture (400B) to 41.99% compared to the control rehydrated with distilled water. In addition, the lysine Zeta-bio formulation notably increased the adherence ability of lyophilized Lp-115 to the Caco-2 cell-line after subjected to the in vitro stress conditions of the simulated gastrointestinal tract passage.

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

Development of the Animal Model with Spleen Deficiency and Observation of Changes in heat and cold (비기능 저하 동물 모델 개발과 한열변화 관찰)

  • Jin-Young, Kwak;Won-Kyung, Yang;Seung-Hyung, Kim;In-Chul, Jung;Yang-Chun, Park;Taek-Won, Ahn
    • Journal of Sasang Constitutional Medicine
    • /
    • v.35 no.1
    • /
    • pp.14-24
    • /
    • 2023
  • Objectives This study was conducted to observe physiological changes when the function of spleen was extremely deteriorated, and to make an animal model with spleen deficiency. Methods The Normal group (Nr group) was not administered with Senna Folium extract. The SFE group(Senna Folium extract group) was administered with Senna Folium extract every day for the first 2 weeks and then every other day for another week. And the SFE_G group(Senna Folium extract_Ginseng group) was also administered with Senna Folium for 3weeks like the SFE group and fed with ginseng in the third week. Results The score of spleen deficiency was significantly higher in SFE group than in the Nr group and significantly lower in the SFE_G group than in the SFE group. The total weight gain was significantly lower in the SFE group than in the Nr group, and the average daily weight gain was significantly lower in the SFE group than in the Nr group. The difference in stool weight before and after the process of drying was significantly higher in the SFE group than in the Nr group, and significantly lower in the SFE-G group than the SFE group. There was no significant difference in the outcomes related to cold and heat among the three groups. Conclusions Through this study, the animal model with spleen deficiency was developed to prepare a stepping stone for animal tests to verify the efficacy and safety of constitutional prescriptions.

Understanding Physical Mechanism of 2022 European Heat Wave (2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구)

  • Ju Heon Kim;Gun-Hwan Yang;Hyun-Joon Sung;Jung Hyun Park;Eunkyo Seo
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2023
  • This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.