DOI QR코드

DOI QR Code

Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates

균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향

  • Park, Ji Yun (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Seo Young (Depatment of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Rhee, Young Woo (Depatment of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 박지윤 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김서영 (충남대학교 공과대학 응용화학공학과) ;
  • 이영우 (충남대학교 공과대학 응용화학공학과)
  • Received : 2021.02.02
  • Accepted : 2021.03.27
  • Published : 2021.08.01

Abstract

Mn-added Barium hexaaluminates were manufactured by homogeneous precipitation method using Urea. The effects of water wash and dry temperature were analyzed by thermal weight analysis, X-ray diffraction analysis, and scanning electron microscopy. Catalysts that went through the filtration step only produced pure hexaaluminate images compared to those that went through the water wash step. During the drying process, it seems that the remaining urea helps dehydration of the precursor and affects the phase shift of gibbsite to boehmite, which is easy to convert to pure hexaaluminate. The catalyst WO200 gave the best performance in the methane combustion reaction, and NOx was not emitted in the reaction for all catalysts. Hexaaluminates were found to affect reducing the highest CO emissions.

요소를 이용한 균일용액침전법으로 망간이 첨가된 바륨 헥사알루미네이트를 제조하였다. 합성 후 수세 여부와 건조온도에 따른 영향을 열중량분석, X선 회절분석과 장방출 주사현미경으로 분석하였다. 수세하지 않은 여과단계만 거친 소성촉매가 수세단계를 거친 소성촉매보다 순수한 헥사알루미네이트 상을 얻을 수 있었다. 건조과정 동안 합성 후 잔존한 요소가 전구체에 탈수과정을 도와 주요 금속종인 깁사이트를 순수한 헥사알루미네이트로 변환되기 쉬운 보에마이트로 상변이에 영향을 주었다. 제조된 촉매의 메탄 연소성능 평가는 WO200이 가장 우수하였으며, 모든 촉매연소반응에서 NOx가 배출되지 않았다. 헥사알루미네이트는 최고 CO 배출량을 감소시키는데 영향을 주는 것으로 확인되었다.

Keywords

Acknowledgement

이 연구는 2019년 충남대학교 학술연구비에 의해 지원되었음.

References

  1. Prefferle, L. D. and Prefferle, W. C., "Catalytically Stabilization Combustion," Catal. Rev.-Sci. Eng., 29(2&3), 219-267(1987). https://doi.org/10.1080/01614948708078071
  2. Arai, H., Yamada, T. and Eguchi, K., "Catalytic Combustion of Methane over Perovskite-Type Oxides," Appl. Catal., 26, 265-276(1986). https://doi.org/10.1016/S0166-9834(00)82556-7
  3. McCarty, J. G. and Wise, H., "Perovskites Catalyst for Methane Combustion," Catal. Today, 8, 231-248(1990). https://doi.org/10.1016/0920-5861(90)87020-4
  4. Machida, M., Eughi, K. and Arai, H., "Effect of Additives on the Surface Area of Oxide Supports for Catalytic Combustion," J. Catal., 103, 385-393(1987). https://doi.org/10.1016/0021-9517(87)90129-1
  5. Beguin, B., Garbowski, E. and Primet, M., "Stabilization of Alumina by Addition of Lanthanum," Appl. Catal., 75(1), 119-132(1991). https://doi.org/10.1016/S0166-9834(00)83128-0
  6. Machida, M., Eguchi, K. and Arai, H., "Effect of Structural Modification on the Catalytic Property of Mn-Substituted Hexaaluminates," J. Catal., 123(2) 477-485(1990). https://doi.org/10.1016/0021-9517(90)90144-9
  7. Beguin, B., Garbowski, E. and Primet, M., "Stabilization of Alumina toward Thermal Sintering by Silicon Addition," J. Catal., 127(2), 595-604(1991). https://doi.org/10.1016/0021-9517(91)90185-7
  8. Groppi, G., Bellotto, M., Cristiam, C., Forzatti, P. and Villa, P. L., "Preparation and Characterization of Hexaaluminate-Based Materials for Catalytic Combustion," Applied Catalysis A: General, 104(2), 101-108(1993). https://doi.org/10.1016/0926-860X(93)85092-4
  9. Maeda, K., Mizukami, F., Niwa, S., Toba, M., Watanabe, M. and Masuda, K., "Thermal Behaviour of Alumina from Aluminium Alkoxide Reacted with Complexing Agent," J. Chem. S o C., Faraday Trans., 88(1), 97-104(1992). https://doi.org/10.1039/ft9928800097
  10. Maeda, K., Mizukami, F., Watanabe, M., Arai, N., Toba, M. and Shimizu, K., "Synthesis of Thermostable High-surface-area Alumina for Catalyst Support," J. Mater. Sci. Lett., 9(5), 522-523(1990). https://doi.org/10.1007/BF00725864
  11. Mao, C. F. and Vannice, M. A., "High-Surface-Area Alpha-Alumina. 1. Adsorption Properties and Heats of Adsorption of Carbon-Monoxide, Carbon-Dioxide and Ethylene," Appl. Catal., A, 111(2), 151-173(1994). https://doi.org/10.1016/0926-860X(94)85049-6
  12. Maeda, K., Mizukami, F., Watanabe, M., Arai, N., Toba, M. and Shimizu, K., "Synthesis of Thermostable High-Surface-Area Alumina for Catalyst Support," J. Mater. Sci. Lett., 9(5), 522-523(1990). https://doi.org/10.1007/BF00725864
  13. Serantoni M., Costa, A. L., Zanelli, C. and Esposito, L., "Crystallization Behaviour of Yb-doped and Undoped YAG Nanoceramics Synthesized by Microwave-Assisted urea Precipitation," Ceram. Int., 40(8), 11837-11844(2014). https://doi.org/10.1016/j.ceramint.2014.04.018
  14. Martino, C. J. and Fondeur, F. F., "Gibbsite/Bayerite and Uranium in Tank 41H," WSRC-RP-2002-00530(2002).
  15. Casapu, M., Grunwaldt, J. D., Maciejewski, M., Wittrock, M., Gobel, U. and Baiker, A., "Formation and Stability of Barium Aluminate and Cerate in NOx Storage-reduction Catalysts," Appl. Catal., B, 63, 232-242(2006). https://doi.org/10.1016/j.apcatb.2005.10.003
  16. Yin, F., Ji, S., Wu, P., Zhao, F. and Li, C., "Preparation, Characterization, and Methane Total Oxidation of AAl12O19 and AMAl11O19 Hexaaluminate Catalysts Prepared with Urea Combustion Method," J. Mol. Catal. A: Chem., 294, 27-36(2008). https://doi.org/10.1016/j.molcata.2008.05.015
  17. Park, J. Y., Jung, Y. S. and Rhee, Y. W., "Effects of Concentration of Precipitants and Aging Time on Synthesis of Mn-Substituted Barium Hexaaluminates by Homogeneous Precipitation," Korean Chem. Eng. Res., 56(3), 349-355(2018). https://doi.org/10.9713/KCER.2018.56.3.349
  18. Jana, P., Jayan, P. S., Mandal, S. and Biswas, K., "Effect of Seeding on the Formation of Lanthanum Hexaaluminates Synthesized Through Advanced Sol Gel Process," Journal of Crystal Growth., 408, 7-13(2014). https://doi.org/10.1016/j.jcrysgro.2014.09.015
  19. Kundu, S. and Naskar, M. K., "Microwave-hydrothermal Synthesis of Mesoporous γ-Al2O3 and Its Impregnation with AgNPs for Excellent Catalytic Oxidation of CO," Bulletin of Materials Science., 41, 161(2018). https://doi.org/10.1007/s12034-018-1675-2
  20. Bernhard, A. M., Peitz, D., Elsener, M., Wokaun, A. and Krocher, O., "Hydrolysis and Thermol ysis of Urea and Its Decomposition Byproducts Biuret Cyanuric Acid and Melamine over Anatase TiO2", Appl. Catal. B Environ., 115, 129-137(2012).
  21. Chen, D., Zhang, L. H., Li, H. Z. and Liu, Y., "A Simple Method for Growing Hexaaluminate on the Surface of FeCrAl Alloy," Appl. Surf. Sci., 301, 280-288(2014). https://doi.org/10.1016/j.apsusc.2014.02.062
  22. Bell, T. E., Gonzalez-Carballo, J. M., Tooze, R. P. and TorrenteMurciano, L., "γ-Al2O3 Nanorods with Tuneable Dimensions - a Mechanistic Understanding of Their Hydrothermal Synthesis," RSC. Adv., 7, 22369-22377(2017). https://doi.org/10.1039/C7RA02590D
  23. Yin, F., Ji, S., Wu, P., Zhao, F. and Li, C., "Preparation, Characterization, and Methane Total Oxidation of AAl12O19 and AMAl11O19 Hexaaluminate Catalysts Prepared with Urea Combustion Method," J. Mol. Catal. A: Chem., 294, 27-36(2008). https://doi.org/10.1016/j.molcata.2008.05.015