• Title/Summary/Keyword: drying energy

Search Result 536, Processing Time 0.026 seconds

Development of Slurry Flow Control and Slot Die Optimization Process for Manufacturing Improved Electrodes in Production of Lithium-ion Battery for Electric Vehicles (전기자동차 리튬이온 배터리 제조공정에서 Loading Level 산포최소화 코팅을 통한 전극 품질개선에 관한 연구)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.14-20
    • /
    • 2018
  • Electric vehicles are environmentally friendly because they emit no exhaust gas, unlike gasoline automobiles. However, since they are driven by the electric power from batteries, the distance they can travel based on a single charge depends on their energy density. Therefore, the lithium-ion battery having a high energy density is a good candidate for the batteries of electric vehicles. Since the electrode is an essential component that governs their efficiency, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the coating process is a critical step in the manufacturing of the electrode, which has a significant influence on its performance. In this paper, we propose an innovative process for improving the efficiency and productivity of the coating process in electrode manufacturing and describe the equipment design method and development results. Specifically, we propose a design procedure and development method in order to improve the core plate coating quality by 25%, using a technology capable of reducing the assembly margin due to its high output/high capacity and improving the product capacity quality and assembly process yield. Using this method, the battery life of the lithium-ion battery cell was improved. Compared with the existing coating process, the target loading level is maintained and dispersed to maintain the anode capacity (${\pm}0.4{\rightarrow}{\pm}0.3mg/cm^2r$ reduction).

Complexation of Omeprazole with Meglumine and its Stability (오메프라졸과 메글루민의 복합체 형성과 안정성)

  • Lee, Gye-Ju;Kim, Sung-Wook;Do, Ki-Chan;Park, Chong-Bum;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.253-263
    • /
    • 1997
  • To investigate the interaction of omeprazole (OMP) and meglumine (MEG), a complex was prepared by freeze-drying method in ammoniacal aqueous medium at room temperature and subjected to IR, DSC, and 1H NMR analysis. In addition, the stability of the complex was tested by accelerated stability analysis, and the dissolution rate of both powder and enteric coated was determined pellet by paddle method. The results are as follows; i) IR, DSC, and $^{1}H$ NMR studies indicate the formation of inclusion complex between OMP and MEG probably by electrostatic forces as $[OMP]\;[MEGH]^+$ form in a stoichiometric ratio (1:1) of OMP : MEG. ii) The dissolution rate of enteric coated OMP-MEG complex pellet in simulated enteric fluid was 90.6% in 10 minutes, which may satisfy the requirement for the regulation of dissolution. iii) OMP-MEG complex were decomposed according to pseudo 1st order kinetics: while the decomposition of OMP showed a rate constant $(k_{25^{\circ}C})$ of $5.13{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 1,350 days, a shelf-life$(T_{90%})$ 205 days and an activation energy of 23.53 kcal/mole. OMP-MEG complex inhibited a rate $(k_{25})$ of $2.92{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 2,373 days, a shelf-life $(T_{90%})$ of 306 days and an activation energy of 20.18 kcal/mole. iv) OMP was stabilized markedly by the formation of OMP-MEG complex between OMP and MEG, and the humidity increased the stability of OMP-MEG complex by decreasing the decomposition rate$(k_{50^{\circ}C})$ from $1.27{\times}10^{-2}{\cdot}\;day^{-1}$ at 31% R.H. to $2.54{\times}10^{-2}{\cdot}\;day^{-1}$ at 90% R.H.

  • PDF

Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation (산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.804-809
    • /
    • 2011
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes were prepared by extrusion. TGA results of green body membrane after extrusion showed three successive weight losses due to decomposition of organic additives and carbonate. Drying shrinkage rate of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes was no change after 68 h and higher in the membrane with large outer diameter. XRD and SEM results showed the sintered membranes were the single phase structure and dense. The stoichiometric molar ratio agreed well with composition ratio calculated by EDS results for $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane. Radial crushing strength of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane with 0.95 mm thickness was 5.7 kgf/$mm^2$ and the oxygen permeation rate of same membrane was 146.85 mL/min ($Jo_2$=2.33 mL/$min{\cdot}cm^2$) at $950^{\circ}C$. Therefore, it was known that use of vacuum pump was more effective than that of sweep gas to obtain higher oxygen permeation flux.

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Supercritical Dyeing Technology (초임계 염색 기술)

  • Kim, Taewan;Park, Geonhwan;Kong, Wonbae;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • As the social demands for environmental pollution increase and regulations on the dyeing process wastewater are strengthened, supercritical dyeing process has been attracting attention as an alternative technology to reduce wastewater and energy consumption. In the supercritical dyeing process where carbon dioxide is used as a solvent instead of water as a solvent, there is no wastewater generated. The unfixed dyes can be reused later which makes the process environment-friendly. Also, after dyeing process, dried textiles can be obtained without additional drying process, which makes the process energy efficient. In this article, we have summarized the development of the supercritical dyeing process along with the research in Korea today and compared the principle of supercritical dyeing process with conventional dyeing process. To further explain the principle, studies of the distribution factor and mass transfer of dyes in supercritical carbon dioxide and fibers, as well as solubility between supercritical $CO_2$ and dyes are discussed. The dynamic behavior of dyes in supercritical dyeing apparatus and summary of the supercritical dyeing facilities developed around the world are also discussed. Finally, we suggest the direction of research and development for optimization of supercritical dyeing process and application to synthetic fibers and natural fibers except for polyester.

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.