• Title/Summary/Keyword: drying conditions

Search Result 928, Processing Time 0.031 seconds

Drying Characteristics of Garlic (마늘의 건조특성에 관한 연구)

  • 이정호;고학균
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 1996
  • This study was performed to find out drying characteristics and develop drying model for the design of an efficient dryer or drying system of garlic. The basic model which describes drying phenomenon of garlic was first established. A series of drying test were conducted with two varieties of garlic(Uiseong, Namdo) at 9-different drying conditions (drying temperatures ; $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, relative humidities ; 20%, 35%, 50%) and statistical analysis was made to fit the data with exponential equation, approximated diffusion equation, page equation, thompson equation and wang equation, respectively. In this test, the effects of drying air temperature and relative humidity on the drying rate were undertaken. Finally, new drying model based on these experimental results was developed to describe the drying characteristics of garlic. Also, the volatile components of garlic extracts were investigated. For experiment both Uisoeng and Namdo garlic were dried by heated-air-drying, followed by ether extraction. The extracts were analysed by Gas chromatography/Mass spectrometer.

  • PDF

Determination of Boxthorn Drying conditions and using Agricultural Dryer (구기자 품질향상을 위한 적정 건조조건 구명)

  • Lee, Seung-Ki;Kim, Woong;Kim, Hoon;Lee, Hyo-Jae;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • This study was carried out to define the optimum drying conditions for Lycium chinense Miller as a useful healthy food, because recently the cultivation area and yield of this fruit are increased. The experiments of two varieties were performed at the temperature of $45^{\circ}C$, $50^{\circ}C$, $55^{\circ}C$ and $60^{\circ}C$. The drying ratio was the slowest and quality was the best at the drying temperature of $45^{\circ}C$. The drying temperature was higher, drying ratio was more faster and the quality became worse. The difference of drying ratios between the varieties was insignificant. The energy consumption per hour was the minimum at the drying temperature of $45^{\circ}C$, but the total energy consumption was the maximum for the long drying time. Also, the energy consumption at the drying temperature $50^{\circ}C$, $55^{\circ}C$ and $60^{\circ}C$ was not very different from others. Considering the drying ratio, quality and energy consumption, the drying time of 36 hours at the drying temperature of $50^{\circ}C$ was the most optimum condition.

A Study on the Thermal Characteristics of Agriculture Products in the Process of Low Temperature Vacuum Drying - With Cayenne as the Object Product for Drying - (농산물의 저온진공건조 열적 특성에 관한 연구 - 고추를 중심으로 -)

  • Choe, S.Y.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • Low temperature vacuum drying technique shows very excellent energy efficiency and prominent drying performances compared with the conventional hot air drying technique. This study was focused on the thermal characteristics of the low temperature vacuum drying technique. From the results of this study, it was confirmed that the time consumption for drying with the new drying technique could be shortened to about 1/3 of the time consumption with the conventional hot air drying technique under the same drying conditions for wet products. Also, the maximum drying rate with the new drying technique reached to about $0.35kg/m^2h$ at about 400% of moisture content.

  • PDF

Volatile Retention during Freeze Drying of Fruit Juices (과실쥬스의 동결건조 중 휘발성분 보유력)

  • 심기환;최진상;주옥수;강갑석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.555-564
    • /
    • 1990
  • The headspace gas chromatographic(analytical) technique was used to evaluate the retention of volatiles in fruit juices during freeze drying as a function of freezing rate, the content of initial solid and chamber pressure. The effects of freezing rate and drying time on the volatile retention under the experimental conditions were marked, particulary at long freezing time. The retention of volatiles in the freeze dried was largely affected by the freezing rate. The highest volatile loss under the freeze drying conditions was observed during the first stage of drying. The behavior during freeze drying of the volatile substances was affected by high content of initial solid. The volatile retention was higher in quick freeze drying than slow freeze drying and low pressure than high.

  • PDF

Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

  • Jeon, Hui-Jeon;Choi, Hyeon-Son;Lee, OK-Hwan;Jeon, You-Jin;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl- 1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

Physical effect of annealing conditions on soluble organic semiconductor for organic thin film transistors

  • Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Keon-Soo;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-269
    • /
    • 2008
  • We have examined the effect of physical drying and annealing conditions for the soluble derivatives of polythiophene as p-type channel materials of organic thin film transistors (OTFTs) in our special designed drying system; performances of the jetting-processed OTFTs can be improved more than 10 times just by optimizing the physical conditions of drying and annealing.

  • PDF

Effects of Drying Conditions on the Quality of White Ginseng (백삼건조 조건이 품질에 미치는 영향)

  • 도재호;김상달
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.248-255
    • /
    • 1985
  • In order to investigate the optimal drying condition of white ginseng by using bulk air drier(130 x 62 x 65cm), drying curves, diffusion coefficient at various drying temperature, the energy of activation, variation of color intensity and chemical components during drying of white ginseng were studied. Fick's second low of diffusion for diffusion out of spheres was successfully applied to describe the drying of white ginseng. It was found that the diffusion coefficient of water was 2.2x107, 9.0x107 cm2/sec at drying temperature 4$0^{\circ}C$, 55$^{\circ}C$, respectively. An Arrhenius type temperature dependency of moisture diffusivity was found, the energy of activation being 18.8 Kcal/g mol. Color intensity of white ginseng dried at various drying temperature was increased with an increase in drying temperature. The contents of crude protein, reducing sugar and crude saponin during drying of white ginseng were gradually decreased as increasing of drying time. And with the sensory evaluation by multiple comparison difference analysis, the optimal drying temperature of white ginseng was between 45$^{\circ}C$ and 5$0^{\circ}C$.

  • PDF

Changes of Phenolic Compounds Affected by Different Drying Method in Leaves and Stems of Peony (Paeonia lactiflora Pall.) (작약 잎과 줄기의 건조 방법에 따른 Phenol 화합물의 변화)

  • Kim, Se-Jong;Park, Jun-Hong;Choi, Seong-Yong;Kim, Kil-Ung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.251-254
    • /
    • 2006
  • This study was conducted to identify changes of chemical components affected by different drying method and temperature conditions in leaves and stems of peony plant. Drying methods were the dried air heated $(50^{\circ}C)$, far-red ray $(50^{\circ}C)$, room temperature and oven dry $(50^{\circ}C)$. Drying temperature were 40, 50, 60, 70 and $80^{\circ}C$ on far-red ray dryer. Among the drying methods, the contents of components were the highest in far-red drying and normal temperature drying as compared with air heated drying and oven drying. Among the drying temperature conditions, the contents of components were the highest in drying temperature at $40^{\circ}C$ and decreased in high temperature of $70^{\circ}C\;and\;80^{\circ}C$.

Predictive Thin Layer Drying Model for White and Black Beans

  • Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.190-198
    • /
    • 2017
  • Purpose: A thin-layer drying equation was developed to analyze the drying processes of soybeans (white and black beans) and investigate drying conditions by verifying the suitability of existing grain drying equations. Methods: The drying rates of domestic soybeans were measured in a drying experiment using air at a constant temperature and humidity. The drying rate of soybeans was measured at two temperatures, 50 and $60^{\circ}C$, and three relative humidities, 30, 40 and 50%. Experimental constants were determined for the selected thin layer drying models (Lewis, Page, Thompson, and moisture diffusion models), which are widely used for predicting the moisture contents of grains, and the suitability of these models was compared. The suitability of each of the four drying equations was verified using their predicted values for white beans as well as the determination coefficient ($R^2$) and the root mean square error (RMSE) of the experiment results. Results: It was found that the Thompson model was the most suitable for white beans with a $R^2$ of 0.97 or greater and RMSE of 0.0508 or less. The Thompson model was also found to be the most suitable for black beans, with a $R^2$ of 0.97 or greater and an RMSE of 0.0308 or less. Conclusions: The Thompson model was the most appropriate prediction drying model for white and black beans. Empirical constants for the Thompson model were developed in accordance with the conditions of drying temperature and relative humidity.

Influence of Freezing Process on the Change of Ice Crystal Size and Freeze-Drying Rate in a Model System (모델 시스템에서 동결속도에 따른 얼음 결정체의 크기 및 동결건조속도의 변화)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.164-175
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on ice crystal size and freeze-drying rate. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80$\times$20mm) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom and measured their pore sizes. Also freeze-drying rate(primary drying) is estimated by measuring the temperature of sample and pressure of vacuum chamber. During freeze-drying, profiles of pressure and temperature were shown constant tendency regardless of freezing temperature and we could expect the end-point of freeze drying by considering pressure and temperature together. In temperature profiles, the point which temperature increased significantly was observed during freeze-drying. There is no relationship between freeze temperature and drying rate of primary drying in our model system. As freezing temperature increased, ice crystal size(X*) which correspond to 63.2% of cumulative frequency was increased and at the same freezing temperature ice crystal size(X*) was decreased with distance from the bottom of the sample. Freezing conditions have a strong influence on the quality of the final freeze-dried products in freeze-drying system.

  • PDF