• Title/Summary/Keyword: dry seasons

Search Result 316, Processing Time 0.022 seconds

Classification of Spring Types in the Western Coastal Area of Jeju Island, Korea, Based on the Hydrogeological Characteristics (수리지질 특성을 고려한 제주도 서부 해안지역 용천의 유형 분류)

  • Koh Chang-Seong;Koh Eun-Hee;Park Won-Bae;Koh Gi-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • This study aimed to classify spring types based on the hydrogeological characteristics of springs in Yongsu-ri~Hamo-ri coastal area in western part of Jeju Island. The springs in study area can be broadly categorized into three groups: perched groundwatrer springs (soil type), perched groundwater springs (sediment type), and basal groundwater springs. The perched groundwater springs of soil type correspond to springs where groundwater seeps out from the perched aquifer formed in the soil layer due to the development of clayey Kosan Formation beneath the surface. Because of the low hydraulic conductivity of soil layer, the average of spring discharge is less than 1 m3/day. The quality of spring water is significantly influenced by agricultural activities, resulting in high nitrate nitrogen concentrations and electrical conductivity. While the perched groundwater springs (sediment type) of the Suwolbong Tuff, which are located in the upper part of Kosan Formation, exhibited relatively higher discharge rates, their water quality was similar to soil-type springs. Basal groundwater springs are located in the zone of basal groundwater, mostly near the coastline. This type of spring appears to discharge of up to 3,707 m3, and the salinity content varies with the tidal fluctuations, especially increasing significantly during dry seasons.

A Study on the Stability of the Slope according to the Bedding of the Sedimentary Rocks (퇴적암지대의 층리 경사에 따른 비탈면 안정성 검토)

  • Seonggi Yu;Chanmook Chung;Dongwon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • A standard slope stability analysis was undertaken for new railway sections, based on the slope of sedimentary rock layers and filling material (sand), to evaluate the stability of the cut-off slope in the section passing through a zone of sedimentary rock. The stability analysis was undertaken during the dry and rainy seasons, accounting for earthquake occurrence, based on slope design criteria. It was found that if the slope of the sedimentary rock formation was <10°, the effect on the safety rate of the cut-off slope was insignificant. Furthermore, a slope relief of 1:1.0 or more should be applied with slopes of 10~20°, and 1:1.2 or more with >20°. This study provides an important reference for evaluation of slope stability when railway and road construction is undertaken in areas of sedimentary rock.

Measurement of metals in sediment of the Geum-River and their correlation (금강수계 퇴적물 중 금속류 분석 및 상관성 조사)

  • Lee, Jun-Bae;Hong, Seoun-Hwa;Kim, Dong-Ho;Huh, In-Ae;Huh, Yu-Jeong;Khan, Jong-Beom;Oh, Da-Yeon;Kim, Keon-Young;Lee, Young-Joon;Lee, Soo-Hyung;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • An investigation of grain size, organic compounds and metal distribution in 23 sediment samples of the Geum-River basin (Korea) was conducted in two seasons of 2012 (dry season and rainy season). The samples of sediment were collected from the basin and investigated for concentrations of some metal and general indexes containing grain size. Concentrations of Pb, Zn, Cu, Cr, Ni, As, Cd, Hg, Al and Li have been determined by inductively coupled plasma spectrometer (ICP) and the sediments organic matter content was determined by the loss on ignition, and sediments were fractionated with three different nylon sieves. Correlation analysis was made for grain size, organic material and metal concentrations, and the Pearson correlation coefficients between their concentrations were determined. As a result, the higher metal concentrations were found in the period of the dry season than in another season. The metal concentrations showed high correlation with that of organic material (COD and TOC). Thereby, the high distribution of metal concentrations in sediment containing high organic compound is suggesting an interaction with organic matter.

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.

Effects of Integrated Soil Amelioration Techniques to Mature Newly Established Research Fields

  • Jung, Sug-Jae;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Cho, Hyun-Jun;Choi, Jung-Won;Lee, Pyeong-Ho;Lim, Dong-Hyuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • The Rural Development Administration moved to Jeonju for the balanced development of the land. This situation required establishment of new research fields with soils appropriate to cultivation. We applied a variety of amelioration techniques to mature soils of new research fields of the National Institute of Agricultural Science (NAS) and evaluated effects of the integrated amelioration techniques. The schedule of amelioration was following: 1) location of research fields was determined, 2) surface and subsoil samples were collected separately, 3) after aligning the top level of research fields, subsoil and surface soil were re-established with soil amendment, 4) the green manure crops were grown four seasons to improve the uniformity and increase the organic content of the research field, and 5) drainage canal and/or underdrainage were applied to poorly drained fields. The last green manure crop was rape in RDA fields and green barley in NAS fields. The average height, fresh weight, and dry matter weight of rape in good condition were 123 cm, $3,938kg\;10a^{-1}$, and $651kg\;10a^{-1}$, respectively. The height, fresh weight, and dry matter of green barley, on average, were 97 cm, $3,013kg\;10a^{-1}$, and $1,004kg\;10a^{-1}$, respectively. In the chemical properties of paddy field, pH and levels of silicate, calcium, magnesium, and potassium were in appropriate range but organic matter content of $16g\;kg^{-1}$ was less than the optimum level. In the chemical properties of upland field, pH and levels of phosphorus, calcium, magnesium, and potassium were appropriate range but organic matter content of $12g\;kg^{-1}$ was less than the optimum range. Evaluation of well-adapted soil was performed. The field in RDA was classified into the superior class with points ranging from 90 to 95 by the field evaluation test. The fields in NAS were mainly evaluated as the superior class with points greater than 85. However, some fields in NAS remained low quality with scores between 80 and 83. Further soil amelioration practices were suggested to fields with low soil quality.

Temporal-spatial Variations of Water Quality in Gyeonggi Bay, West Coast of Korea, and Their Controlling Factor (한국 서해 경기만 연안역에서 수질환경의 시.공간적 변화 특성과 조절 요인)

  • Lim, Dhong-Il;Rho, Kyoung-Chan;Jang, Pung-Guk;Kang, Sun-Mi;Jung, Hoi-Soo;Jung, Rae-Hong;Lee, Won-Chan
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.135-153
    • /
    • 2007
  • Temporal (seasonal) and spatial distributions and variations of various physico-chemical factors (salinity, temperature, pH, DO, COD, SPM, POC, silicate, DIP, DIN) in surface and bottom waters were studied in the coastal environment with typical macro-tidal range and monsoonal weather condition, Gyeonggi Bay, west coast of Korea. Spacial distribution patterns of these factors were generally similar to each other, and appeared to be inversely related to the distribution pattern of salinity, suggesting that water quality of the study area was primarily controlled by the physical mixing process of Han-River freshwater with nearby coastal seawater. During flooding season, silicate- and nitrogen-rich Han River water directly flowed into offshore as far as $20\sim30\;km$ from the river mouth, probably causing serious environmental problems such as eutrophication and unusual and/or noxious algal bloom, etc. Except the surface water during summer flooding season, high concentrations of nutrients appeared generally in dry season, whereas low values in spring, possibly because of the occurrence of spring phytoplankton bloom. On the other hand, nutrient flux through the estuary seems to be primarily depending on river discharge, sewage discharge and agricultural activities, especially during the rainy season. Also, nutrients in this coastal waters are considered to be supplied from the sediments of tidal-flats, which developed extensively around the Han-River mouth, especially during fall and winter of dry and low discharge seasons, possibly due to the stirring of tidal flat sediments with highly enriched pore-water nutrients by storm. And also, COD and DIN concentrations in the study area consistently increased during the last 20 years, probably because of agricultural activities and increasing discharge of industrial and domestic wastes.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

Comparative Yield and Nutritive Value of Oat Varieties as Fresh-Cut Forage (청예사료용 연맥품종의 수량 및 사료가치 비교 연구)

  • Kim, Dong Am;Kim, Jong Gwan;Gwon, Chan Ho;Kim, Won Ho;Han, Geon Jun;Kim, Jong Rim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.1
    • /
    • pp.66-77
    • /
    • 1993
  • The experiment reported here was conducted at Suweon and Sunghwan. to evaluate desirable agronomic characteristics, forage yield and quality of nine introduced oat (Avena sativa L.) cultivars in comparison with the control cultivar Cayuse during the fall and spring seasons for three years. Speed oat and G-sprinter showed earlier in maturity than the control cultivar Cayuse, but Taiho, Zenshin and Almighty were recorded as late types. Taiho, Hay oat and Swallow tended to more lodging than the control cultivar under rainy growing conditions and Taiho, Zenshin and Hay oat were more susceptible to barley yellow dwarf virus among the cultivars tested. At Suweon, the early type cultivars Speed oat and G-sprinter significantly outyielded the control cultivar Cayuse over the 3 years of the fall experiment, but no significant forage yield was found between the early type cultivars and the control in the spring experiment except for 1991 At Sunghwan, the early type Speed oat and late types Almighty and Zenshin significantly outyielded the control in the fall experiment of 1991, but the 3 years of experiment showed no significant difference in the forage yield of oat cultivars in the spring experiment. Over the 3 years of the fall and spring experiments at both Suweon and Sunghwan. the crude protein (CP) content and in vitro dry matter digestibility (IVDMD) of the early types Speed oat and G-sprinter were lower than those of the control and late types, but the acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of the early types Speed oat and G-sprinter were slightly higher than those of the control and late types. Results of this experiment indicate that the early type oat cultivars tended to higher forage yield than the late types when sown in the fall, but no cultivar differences in dry matter yield were found when sown in the spring.

  • PDF

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF