• Title/Summary/Keyword: dry root

Search Result 1,269, Processing Time 0.043 seconds

Effect of LED Light Wavelength on Chrysanthemum Growth (LED광 파장이 국화생육에 미치는 영향)

  • Im, Jae Un;Yoon, Yong Cheol;Seo, Kwang Wook;Kim, Kyu Hyeong;Moon, Ae Kyung;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, I was focusing on LED (Light Emitting Diode) light effect in growth of chrysanthemum. For this reason, I formed six monochromatic lights (red 650 nm, 647 nm, 622 nm, blue 463 nm, 450 nm, white), six mixed lights sources red : blue (9 : 1, 8 : 2, 7 : 3, 6 : 4, 5 : 5) and 3 control beds in light sources ratio between rad : blue (8 : 2) including sun light. It was totally 15 control beds. Depending on light investigation time in growth, 6/6 (on/off) was highest in the length of plant, the number of leaves, the fresh dry and leaf area. But statistical significance wasn't accepted in general. In case of monochromatic lights, length of plant and leaf area is biggest in the Blue 450 mm and the length of root is highest in RED 650 mm. Except for this 3 measuring points (length of plant, the number of leaves and fresh weight), sun light and white was highest. Besides there are monochromatic light effect but various wavelength range in light sources are needed to crop growth. In terms of mixed light resources, except for sun light, It turned out the length of plant is highest in the highest red light rate red : blue (9 : 1), and Red : white (7 : 3) is highest in fresh weight and dry weight. The sun light is the highest one in the leaf area. The results from LED light effect in growth of chrysanthemum are obviously effect on growth and building up the shape. We need to choose suitable light sources in the monochromatic lights and mixed lights for growing high quality of chrysanthemum or Supplemental Lighting.

Effect of Benzyladenopurine Soaking Period on Growth of Mungbean Sprouts (BA침종기간이 숙주나물의 형태와 생장에 미치는 영향)

  • Kang Jin Ho;Ryu Yeong Seop;Yoon Soo Young;Jeon Seung Ho;Kim Hee Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.477-481
    • /
    • 2004
  • In bean sprout culture water imbibition and benzyladenopurine (BA) treatment are done at the same time. The study was carried out to check the effect of treatment period (3, 5, and 7 hours) on growth of mungbean (cv. Keumseongnogdu, Owoolnogdu, and Zhong Lu 1) sprouts and to analyse its absorption amount on the base of their moisture content. The 3 cultivar seeds were soaked in 50 ppm BA solution immediately before 3 hour aeration and then cultured for 6 days. The sprouts were sorted by 4 categories on the base of hypocotyl length; > 7cm, 4 to 7cm < 4cm, and non-germination, and their morphological characters, fresh and dry weights were measured. The cultivar Zhong Lu 1 had the highest rate in longer than 7cm hypocotyls of the three cultivars but the lowest one in shorter than 4cm. Rates of the above 4 categories in cv. Keumseongnogdu, Owoolnogdu showed no significant difference between the treatment periods while one of longer than 7cm hypocotyls in cv. Zhong Lu1 was decreased with longer treatment period. Lateral roots were less formed with longer treatment period, especially as lengthened from 3 to 5 hours. Hypocotyl and root were also lengthened with longer treatment period and hypocotyl was more thickened in 5 hour treatment period than in the two others. Total fresh and dry weights per sprout showed no significant difference between treatment periods although cv. Zhong Lu1 relatively faster grew than the other cultivars. In the case of shorter than 5hour treatment periods the absorption amount of BA was the greatest in cv. Zhong Lu1 but in 7 hour treatment period it was the greatest in cv. Keumseongnogdu and Zhong Lu 1.

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes (단색 발광다이오드에서 자란 축면상추 두 품종의 엽형, 생장 및 기능성 물질)

  • Son, Ki-Ho;Park, Jun-Hyung;Kim, Daeil;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.664-672
    • /
    • 2012
  • As an artificial light source, light-emitting diode (LED) with a short wavelength range can be used in closed-type plant production systems. Among various wavelength ranges in visible light, individual light spectra induce distinguishing influences on plant growth and development. In this study, we determined the effects of monochromatic LEDs on leaf shape index, growth and the accumulation of phytochemicals in a red leaf lettuce (Lactuca sativa L. 'Sunmang') and a green leaf lettuce (Lactuca sativa L. 'Grand rapid TBR'). Lettuce seedlings grown under normal growing conditions ($20^{\circ}C$, fluorescent lamp + high pressure sodium lamp, $130{\pm}5{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod) for 18 days were transferred into incubators at $20^{\circ}C$ equipped with various monochromatic LEDs (blue LED, 456 nm; green LED, 518 nm; red LED, 654 nm; white LED, 456 nm + 558 nm) under the same light intensity and photoperiod ($130{\pm}7{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod). Leaf length, leaf width, leaf area, fresh and dry weights of shoots and roots, shoot/root ratio, SPAD value, total phenolic concentration, antioxidant capacity, and the expression of a key gene involved in the biosynthesis of phenolic compounds, phenylalanine ammonia-lyase (PAL), were measured at 9 and 23 days after transplanting. The leaf shape indexes of both lettuce cultivars subjected to blue or white LEDs were similar with those of control during whole growth stage. However, red and green LEDs induced significantly higher leaf shape index than the other treatments. The green LED had a negative impact on the lettuce growth. Most of growth characteristics such as fresh and dry weights of shoots and leaf area were the highest in both cultivars subjected to red LED treatment. In case of red leaf lettuce plants, shoot fresh weight under red LED was 3.8 times higher than that under green LED at 23 days after transplanting. In contrast, the accumulation of chlorophyll, phenolics including antioxidants in lettuce plants showed an opposite trend compared with growth. SPAD value, total phenolic concentration, and antioxidant capacity of lettuce grown under blue LED were significantly higher than those under other LED treatments. In addition, PAL gene was remarkably activated by blue LED at 9 days after transplanting. Thus, this study suggested that the light quality using LEDs is a crucial factor for morphology, growth, and phytochemicals of two lettuce cultivars.

Growth and Tissue Nutrient Responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla Seedlings Fertilized with Nitrogen, Phosphorus, and Potassium at a Nursery Culture (묘포에서 질소, 인, 칼륨 비료주기가 물푸레나무, 들메나무, 잣나무, 전나무의 생장 및 양분에 미치는 영향)

  • Park, Byung-Bae;Byun, Jae-Kyung;Kim, Woo-Sung;Sung, Joo-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.85-95
    • /
    • 2010
  • The purpose of this study was to quantitatively measure both growth performances and nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings, which are commercially planted in Korea, to nitrogen, phosphorus, and potassium fertilization. We used Dickson's quality index (QI) to compare growth performances and vector diagnosis to interpret nutrient status. Nitrogen fertilization increased more height and root collar diameter growth in F. rhynchophylla and F. mandshurica relative to no fertilization treatment. The QI of F. rhynchophylla and F. mandshurica was the highest on N treatment, but there were no significant differences between treatments for P. koraiensis and A. holophylla. Nitrogen fertilization increased total dry weight by 43, 41, 26, -9% for F. rhynchophylla, F. mandshurica, P. koraiensis and A. holophylla, respectively. In F. rhynchophylla, N fertilization increased N contents with similar N concentrations ("sufficiency"), decreased both P concentrations and P contents ("antagonism"), and decreased K contents with similar K concentrations ("toxic accumulation"). In P. koraiensis, N fertilization decreased N, P, and K concentrations because of more dry weight increases compared to uptaken contents ("dilution"), but N fertilization decreased N, P, and K contents with similar N, P, and K concentrations ("toxic accumulation"). In the light of quality index and vector diagnosis, F. rhynchophylla and F. mandshurica seedlings treated with N fertilization would have high field performance.

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics (다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향)

  • Lee, Jeong Hun;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.