• Title/Summary/Keyword: dry matter accumulation

Search Result 140, Processing Time 0.026 seconds

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Studies on the Effects of Several Physico-Chemical Properties of Soils on the Growth, Nodulation and Yield in Soybeans (토양(土壤)의 몇가지 이화학적(理化學的) 성질(性質)이 대두(大豆)의 생육(生育), 근류형성(根瘤形成) 및 수량(收量)에 미치는 영향(影響))

  • Choi, Chang-Yoel
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.309-329
    • /
    • 1975
  • Studies were carried out to find the effect of various soil properties on the growth, nodulation and yield using a soybean variety, 'Tongbuktae', at various soils. The results of the study are summarized as follow: 1. The formation ratios of various characters in soybeans were different before and after flowering. The root length(89.3%), stem diameter(82.1%), plant height(77.8%), number of nodes(67.4%), and number of nodes(67.9%) gave the high formation ratio before flowering. However, the formation of number of nodules(66.3%), top dry weight(74.9%) and total dry weight(71.7%)was accomplished mainly after flowering. The ratio of the formation in root dry weight was appeared to be about same in the growth period before and after flowering. 2. Nodulation ratio after flowering shelved significantly positive correlation with dry matter accumulation. 3. T/R, top dry weight/plant height and plant height/root length were significantly associated with yield. The tested soils with higher ratio mentioned above, also showed higher yield. 4. pH, oraganic matter, phosphate, potassium, total nitrogen and molybdenum in the soils were significantly correlated with nodulation and yield. Content of calcium in the soils only showed significant association with yield. 5. Soil properties influenced yield were molybdenum, calcium, organic matter, pH, number of nodules, magnesium, phosphate, total nitrogen and potassium in the order of importance. This order was varied according to the soils employed in these studies.

  • PDF

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.

Changes of Root System in Rice (Oryza sativa L.) Plant Under Salt- and Drought- Stressed Agar Medium Conditions. (Agar 배지를 이용한 건조 및 염 처리에 대한 벼 식물체의 근계 변화)

  • 강동진;석정용일;김길웅;이인중
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.396-399
    • /
    • 2004
  • This study was investigated the changes of root length, tissue structure of root tip, and dry matter production of a Dongjinbyeo (DJ) cultivar subjected to 0.4 % agar medium with various concentration of NaCl (salt stress)- and polyethylene glycol 6000 (PEG, drought stress). Root length and dry weight of DJ plant were declined along the high concentration of PEG and NaCl in rice plants. To elucidate the changes of tissue structure in root tip to PEG- and NaCl-treatments, we examined the microscopic observation of root tip in NaCl- and PEG-treated rice plants using Toluidine blue O. By Toluidine blue O staining, methyl-lignin accumulation was found in the epidermis and outer cortex of the elongation zone at an early stage of PEG treatment, whereas was found only the outer cortex of the elongation zone of NaCl-treated root tip. The epidermis of NaCl-treated root tip became soften instead of methyl-lignin accumulation. TR ratio was increased along the high concentration in PEG- and NaCl-treated rice plant as a result of inhibited root elongation under PEG- and NaCl-treatment. From these morphological changes in root stimulated by drought and salt stress, we suggest that agar medium is useful to identify tolerant variety in germination stage under stressful environments.

Characteristics of Photosynthesis and Dry Matter Accumulation in Japonica and Tongil type Rice (수도자포니카 및 통일형 품종의 광합성 및 물질생산 특성)

  • 허훈;양덕조;류경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.45-53
    • /
    • 1992
  • This studies were conducted to investigate the physiological characteristics of photosynthesis and dry matter accmulation of 2 Tongil type and 2 Japonica type varieties under different temperature and light intensity condition. Photosynthetic activities were lower in Tongil type varieties than Japonica type at low temperature(17$^{\circ}C$), but higher in Tongil type varieties at high temperature in each growth stages. The degradation rate of photosynthesis was higher in Tongil type varieties than Japonica type varieties at low temperature and Tongil type varieties were showed high photosynthetic activities at high temperature ($25^{\circ}C$). Specific Leaf Area in each growth stages were the highest at tillering and increased from panicle formation stage to heading stage. The ratio of respiration to photosynthesis (R /P$\times$200) into upper three leaves were significantly high in third leaf and showed same slope in each varieties. CGR, NAR were higher in Tongil type varieties than Japonica type varieties and yields, havesting index were showed high in Tongil type varieties.

  • PDF

(1-3, 1-4)-$\beta$-Glucan and Starch Contents and Their Hydrolytic Enzyme Activities in Developing Barley Kernels (등숙 중인 보리 종실중 (1-3, 1-4)-$\beta$-Glucan과 전분 함량 및 이들의 가수분해효소 활성)

  • 윤성중;박상래;유남희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.403-409
    • /
    • 1997
  • To obtain information on the accumulation of (1-3, 1-4)-$\beta$-glucans during kernel maturation, (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities were determined in developing kernels of the two Korean cooking barley varieties, Neulssalbori and Saessalbori. (1-3, 1-4)-$\beta$-Glucan contents in kernels at 5 and 10 days after anthesis(DAA) were very low and the contents increased rapidly in kernels at 15 to 25 DAA. (1-3, 1-4)-$\beta$-Glucan content in kernels at harvest was about 3.5 to 4% of kernel dry matter. (1-3, 1-4)-$\beta$-Glucanase activities were relatively higher in younger kernels but the levels of the activity were very low compared with those in germinating kernels. A significant negative correlation was observed between (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities. Low levels of (1-3, 1-4)-$\beta$-glucanase activites in kernels at 15 to 30 DAA, however, may indicate that (1-3, 1-4)-$\beta$-glucanases have little effect on the final content of (1-3, 1-4)-$\beta$-glucans in barley kernels. Starch contents and $\alpha$-amylase activities were also determined in developing barley kernels. Starch contents increased rapidly as kernels matured and the content at harvest was about 60% of kernel dry matter. Relativley higher levels of $\alpha$-amylase activities in kernels at the earlier developmental stage decreased rapidly as kernels matured.

  • PDF

Effect of Nitrogen Fertilization Levels and its Split Application of Nitrogen on Growth Characters and Productivity in Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench]

  • Jung, Jeong Sung;Kim, Young-Jin;Kim, Won Ho;Lee, Sang-Hoon;Park, Hyung Soo;Choi, Ki Choon;Lee, Ki-Won;Hwang, Tae-Young;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • Nitrogen (N) fertilizer management is one of the important aspects of economic production of sorghums in sustainable agriculture. The aim of the study was to evaluate the effects of different N application rates and its split N application methods on productivity, growth characteristics, N accumulation, N use efficiency (NUE), and feed value of Sorghum ${\times}$ Sudangrass hybrids. Treatments consisted of five N application rates (0, 150, 200, 250, and $300kg\;ha^{-1}$) and two split N application methods (40% in basal N, 30% at the growing stage, and 30% after the first harvest vs. 50% in basal N and 50% after the first harvest). Plant height, leaf width, and stem diameter were increased ($p{\leq}0.05$) with increasing N fertility rates at each harvest. Chlorophyll content (expressed as SPAD values) was the highest at a rate of $300\;kg\;N\;ha^{-1)$ (first harvest, 46.32; second harvest, 33.09). It was the lowest at zero N (first harvest, 21.56; second harvest, 18.5). Total N, N uptake, and NUE were increased with higher N rates. Split N application had little effect on total N, amount of N uptake, or NUE. Total dry matter yields were the highest ($21,715\;kg\;ha^{-1}$) at a rate of $300\;kg\;N\;ha^{-1}$. It was the lowest ($10,054\;kg\;ha^{-1}$) at zero N. Our results suggest that more than $300\;kg\;N\;ha^{-1}$ can improve dry matter yield to be above 116% compared to zero N, thus enhancing the agronomic characters of sorghums. However, no significant effect had been found for split N application. Further work is needed to determine the optimal N levels and the effect of split N application rates.

Comparison of Yield and Content of Salidroside with Application Rates of Nitrogenic Fertilizer under Forcing Culture of Rhodiola rosea L. (바위돌꽃(Rhodiola rosea L.)의 촉성재배시 질소 시비에 따른 수량과 Salidroside 함량)

  • Lee, Kang-Soo;Choi, Sun-Yeong;Li, Long-Gen;Hwang, Seon-Ah
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.124-130
    • /
    • 2008
  • This experiment was conducted to investigate the optimum nitrogen fertilization conditions for the production of high-quality Rhodiola rosea L. in forcing culture. Up until 48 kg N/10 a of both urea and ammonium sulfate, dry matter yield of root of Rhodiola rosea L. tended to increase with increase in application rates, however, it decreased thereafter in higher application rates. In the case of urea, the content of salidroside in the root of the Rhodiola rosea L. appeared to decrease rapidly from the application rates of 64 kg N/10 a and over. Meanwhile, the content of salidroside in the root tended to decrease gradually with the application rates exceeding 64 kg N/10 a of ammonium sulfate. The optimum fertilization rates of urea and ammonium sulfate was 45-8-20-10-10 (N-P-K-Ca-Mg) kg/10 a according to the curvilinear regression equation. However, considering the nitrogen accumulation in soil, nitrogen translocation into the plant, and dry matter yield and content of salidroside in the root of Rhodiola rosea L., the optimum fertilization rates of urea and ammonium sulfate would be 40-8-20-10-10 kg/10 a and 35-8-20-10-10 kg/10 a, respectively.

Influence of Transplanting Dates on Some Characteristics of Rice Varieties (생육기간의 차이가 수도 지상부 형질변이에 미치는 영향)

  • 최수일;노승표;황창주;김진기;최경구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.125-136
    • /
    • 1981
  • This experiment was conducted to study the influence of different cultivation periods on some morphological and agronomic characteristics of rice plant at Iri, the Honam plain, in 1979. Early maturing varieties showed little delay in heading with late transplanting, but intermediate and late maturing varieties showed more than 7 day delay in heading. The number of days required to reach heading was over 55 and 67 days after transplanting in early and intermediate-late maturing varieties, respectively. There was significantly postitive correlation between the length of vegetative stage and the grain yield. The mean temperature during ripening period was significantly correlated with the grain yield and the percentage of filled grains. The length, width, and thickness of leaf increased with earlier transplanting and the elongation degree between upper and lower leaves showed the same tendency. The productivity of dry matter and the translocation rate of photosynthate to spikelet decreased with late transplanting mainly due to low temperature. LAI was also influenced by transplanting date showing close correlation with yield. Early transplanting was desirable for assimilation and dry matter accumulation.

  • PDF

Dry Matter, Nitrogen Distribution and Organic Reserves Accumulation as Affected by Nitrate Supply Level in Alfalfa (Medicago sativa L.) (질산태 질소의 공급수준에 따른 알팔파의 건물, 질소의 분포 및 저장영양소의 축적)

  • Kim, Tae-Hwan;Jung, Woo-Jin;Lee, Bok-Rye;Kim, Dae-Hyun;Kim, Kil-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.3
    • /
    • pp.153-160
    • /
    • 2002
  • To investigate the effects of the exogenous N $O_3$$^{[-10]}$ supply level on the nitrate assimilation and growth during the vegetative growth stage, and on the accumulation of organic reserves during the successive regrowth period, dry matter (DM), the amount of nitrogenous compounds, total N and starch in alfalfa plants grown hydroponically with 0.2, 1.0 and 3.0 mM KN $O_3$ was estimated, respectively, during vegetative growth period and two cycle of regrowth. When compared with DMs and N contents in various N compounds in the organs grown with 1.0 mM N $O_3$$^{[-10]}$ , N starvation symptoms were found in 0.2 mM and a depressive effect was observed in 3.0 mM after 10 weeks of vegetative growth. Total starch content in root system gown with 0.2, 1.0 and 3.0 mM N $O_3$$^{[-10]}$ during the first regrowth was 50.96, 15.47 and 6.37 mg plant$^{-1}$, respectively. Starch was contained mainly in taproots. The starch content was not significantly changed by 24 days of the second regrowth with 1.0 mM N $H_4$N0$_3$. Total nitrogen content in root system grown with 0.2, 1.0 and 3.0 mM N $O_3$$^{[-10]}$ during the first regrowth was 6.66, 8.43 and 11.09 mg plant$^{-1}$ , respectively. Nitrogen was contained mainly in lateral roots; 80% (in 0.2 mM), 74% (1.0 mM) and 76% (3.0 mM) of total nitrogen in root system. Total N content in root system at the end of the second regrowth also closely affected by the N $O_3$$^{[-10]}$ supply level during the first regrowth. These results suggest that the level of N $O_3$$^{[-10]}$ may strongly influence the accumulation of organic reserves in root system, and that the initial level of organic reserves for the successive regrowth was one of the determinants for shoot regrowth.