• Title/Summary/Keyword: dry connection

Search Result 60, Processing Time 0.021 seconds

Influence of connection detailing on the performance of wall-to-wall vertical connections under cyclic loading

  • Hemamalini, S.;Vidjeapriya, R.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.437-448
    • /
    • 2020
  • In high rise buildings that utilize precast large panel system for construction, the shear wall provides strength and stiffness during earthquakes. The performance of a wall panel system depends mainly on the type of connection used to transfer the forces from one wall element to another wall element. This paper presents an experimental investigation on different types of construction detailing of the precast wall to wall vertical connections under reverse cyclic loading. One of the commonly used connections in India to connect wall to wall panel is the loop bar connection. Hence for this study, three types of wet connections and one type of dry connection namely: Staggered loop bar connection, Equally spaced loop bar connection, U-Hook connection, and Channel connection respectively were used to connect the precast walls. One third scale model of the wall was used for this study. The main objective of the experimental work is to evaluate the performance of the wall to wall connections in terms of hysteretic behaviour, ultimate load carrying capacity, energy dissipation capacity, stiffness degradation, ductility, viscous damping ratio, and crack pattern. All the connections exhibited similar load carrying capacity. The U-Hook connection exhibited higher ductility and energy dissipation when compared to the other three connections.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections With Intermediate Moment Frame Details (중간모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Cho, Jong;Oh, Hyo Keun;Choi, Seok Dong;Yeo, Un Yong;Lee, Deuck Hang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections with Special Moment Frame Details (특수모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Lee, Deuck Hang;Kim, Yong Kyeom;Lee, Sang Won;Yeo, Un Yong;Park, Jung Eun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.

Reviews on the Application of Dry Coupler PC Member Joining Technology (건식커플러를 활용한 PC부재 접합기술의 적용현장에 대한 고찰)

  • Park, Je-Young;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.233-234
    • /
    • 2023
  • This paper confirms the application sites of dry coupler technology, which is a direct connection method using screw threads, and Unlike wet couplers, this method can stand on its own without proof support and continuous work on the upper part. Furthermore, concludes with personal considerations to improve constructability.

  • PDF

An Experimental Study on Dry-Connection for Precast Concrete Shear Walls (PC 전단벽 건식접합부에 관한 실험연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.21-24
    • /
    • 2005
  • In this study, new methods of PC panel connection using 'ㄷ'type steel connection is proposed for highly seismic zone. A study was carry out to investigate the connection behavior subjected to cyclic inelastic loading. Three planar type and two T type PC wall will be tested. The variables will be examined were the shear reinforcement existence of top and bottom walls. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. To transfer the shear strength shear key set up between top and bottom wall. Failure mode, behavior, ductility and energy dissipation capacity of the specimens constructed by new connections wll be compared with those of monolithic walls and Han's(Han, Jun Hee, Seoul National University) model.

  • PDF

Flexural behavior of precast concrete wall - steel shoe composite assemblies with dry connection

  • Wu, Xiangguo;Xia, Xinlei;Kang, Thomas H.K.;Han, Jingcheng;Kim, Chang-Soo
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.545-555
    • /
    • 2018
  • This study aimed to investigate the flexural behavior of precast concrete (PC) wall - steel shoe composite assemblies with various dry connection details at mid-span. Flexural tests were performed for five scenarios. Test parameters included the width of test specimens, arrangement of steel shoe connectors, and use of structural adhesive or waterproof tape at the mid-span joint. The test results showed that the PC wall - steel shoe composite assemblies joined at mid-span showed flexural damage patterns combined with rotational deformation, and the structural performance was satisfactory regardless of the arrangement of steel shoe connectors. Considering the two deformation components (flexural deformation by bending and rotational deformation due to joint opening), a theoretical model was proposed to analyze flexural strength and joint opening, and the simple model gave good predictions with acceptable accuracy.

On the Motion of the Structure Varying Multibody Systems with Two-Dimensional Dry Friction

  • Xie Fujie;Wolfs Peter;Cole Colin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.927-935
    • /
    • 2005
  • In the present paper the dynamics of the structure varying multibody systems caused by stick-slip motion with two-dimensional dry friction are analyzed. The methods to determine friction force both in stick and slip states are described. The direct method of considering the wagon bogie system as a structure varying system was used to consider two dimensional friction at the wheelset-side frame connection. The concept of friction direction angle used to determine the friction force components of two-dimensional dry friction both in the stick and slip motion states was used. A speed depended friction coefficient was used and described approximately by hyperbolic secant function. All switch conditions were derived and friction forces both for stick and slip states. Some simulation results are provided.

Dry Connections for Precast Shear Wall Systems (프리캐스트 전단벽 시스템의 건식접합부에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC walls require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels

  • Lago, Bruno Dal
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.81-95
    • /
    • 2019
  • The unexpected seismic interaction of dry-assembled precast concrete frame structures typical of the European heritage with their precast cladding panels brought to extensive failures of the panels during recent earthquakes due to the inadequateness of their connection systems. Following this recognition, an experimental campaign of cyclic and pseudo-dynamic tests has been performed at ELSA laboratory of the Joint Research Centre of the European Commission on a full-scale prototype of precast structure with vertical and horizontal cladding panels within the framework of the Safecladding project. The panels were connected to the frame structure by means of innovative arrangements of fastening systems including isostatic, integrated and dissipative. Many of the investigated configurations involved a strong frame-cladding interaction, modifying the structural behaviour of the frame turning it into highly non-linear since small deformation. In such cases, properly modelling the connections becomes fundamental in the framework of a design by non-linear dynamic analysis. This paper presents the peculiarities of the numerical models of precast frame structures equipped with the various cladding connection systems which have been set to predict and simulate the experimental results from pseudo-dynamic tests. The comparison allows to validate the structural models and to derive recommendations for a proper modelling of the different types of existing and innovative cladding connection systems.