• Title/Summary/Keyword: dry based-process

Search Result 325, Processing Time 0.026 seconds

Geochemistry of Total Gaseous Mercury in Nan-Ji-Do, Seoul, Korea (난지도 지역의 대기수은 지화학)

  • Kim, Min-Young;Lee, Gang-Woong;Shin, Jae-Young;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.611-622
    • /
    • 2000
  • To investigate the exchange rates of mercury(Hg) across soil-air boundary, we undertook the measurements of Hg flux using gradient technique from a major waste reclamation site, Nan-Ji-Do. Based on these measurement data, we attempted to provide insights into various aspects of Hg exchange in a strongly polluted soil environment. According to our analysis, the study site turned out to be not only a major emission source area but also a major sink area. When these data were compared on hourly basis over a full day scale, large fluxes of emission and deposition centered on daytime periods relative to nighttime periods. However, when comparison of frequency with which emission or deposition occurs was made, there emerged a very contrasting pattern. While emission was dominant during nighttime periods, deposition was most favored during daytime periods. When similar comparison was made as a function of wind direction, it was noticed that there may be a major Hg source at easterly direction to bring out significant deposition of Hg in the study area. To account for the environmental conditions controlling the vertical direction of Hg exchange, we compared environmental conditions for both the whole data group and those observed from the wind direction of strong deposition events. Results of this analysis indicated that the concentrations of pollutant species varied sensitively enough to reflect the environmental conditions for each direction of exchange. When correlation analysis was applied to our data, results indicated that windspeed and ozone concentrations best reflected changes in the magnitudes of emission/deposition fluxes. The results of factor analysis also indicated the possibility that Hg emission of study area is temperature-driven process, while that of deposition is affected by a mixed effects of various factors including temperature, ozone, and non-methane HCs. If the computed emission rate is extrapolated to the whole study area we estimate that annual emission of Hg from the study area can amount to approximately 6kg.

  • PDF

Effect of Biodegradable Waste Particle Size on Aerobic Stabilization Reactions in MBT System (생분해성 폐기물 입경이 MBT시스템과 연계된 호기성안정화반응에 미치는 영향)

  • Kwon, Sang-Hagk;Ban, Jong-Sub;Kim, Su-Jin;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.523-529
    • /
    • 2011
  • This study has been performed to examine the influence of the size of particles on the stabilization in the aerobic stabilization equipment connected with MBT system. The biodegradable waste inside the reactor (60% of food waste, 25% of paper waste, 2% of wood waste and 5% of compost) has been charged in same composition. The degree of stabilization was compared and analyzed after charging with adjustment of particle size in 5 mm, 10 mm, 20 mm, 50 mm, 100 mm and state of no separation. The experiment revealed that highest temperature beyond $65^{\circ}C$ was shown in the particle size of less than 50 mm in change of temperature and the highest temperature was about $50^{\circ}C$ in reactor of 100 mm and no separation. The proportionality between generated quantity of $CO_2$ and particle size was not observed, even the highest in generated quantity was shown in over 100 mm. The weight changes based on wet and dry conditions in the reaction process showed the 30% and 46% of reduction in the smallest particle size of 5 mm and it showed the trend of the lower reduction rate at the bigger particle size. The water soluble $COD_{Cr}$ and TOC showed the reduction rate of 60% in reactor of particle size in 100 mm and no separation while the reduction rate comparing to the initial stage of reaction in the reactor of less than 50 mm was 80%. Such result derived the conclusion of acceleration in the decomposing stabilization of biodegradable material due to the decomposing rate of organic substance as the particle size of biodegradable waste gets smaller. It is concluded as necessary to react in adjustment under 50 mm of particle size as much as possible.

Chemical Structure of Ozonized Waste Cooking Oil and Wood Bonding Strengths of Reaction Products with pMD (오존 처리한 폐식용유의 화학구조와 pMDI로 제조한 접착제의 목재 접착강도)

  • Kang, Chan-Young;Lee, Eung-Su;Ryu, Jae-Yun;Lee, Hyun-Jong;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.316-322
    • /
    • 2010
  • The research attempted to develop a wood adhesive based on waste cooking oil, using ozonification technology for the chemical structure modification. The waste cooking oil (WCO) was reacted with $O_3$ for different times; 1 h, 2 h, and 3 h. The chemical structure modifications of the ozonized WCOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of WCO had an absorbance peak at 3,010 $cm^{-1}$ that was the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and carboxyl peak appeared at 1,700 $cm^{-1}$. Especially, the double bond of 3 hrs-ozonized WCO was vanished almost. In results of the dry bonding strengths of the 3 hrs-ozonized WCO mixed with polymeric methylene diphenyl diisocyanate (pMDI) were the strengths of weight ratio of 3hrs-ozonized WCO : pMDI, 1 : 0.5, 8.08 kgf/$cm^2$, 1 : 0.75, 9.53 kgf/$cm^2$ 1 : 1, 44.16 kgf/$cm^2$, 1 : 2, 58.08 kgf/$cm^2$, 1 : 3, 61.41 kgf/$cm^2$, and 1 : 4, 46.95 kgf/$cm^2$. Therefore, it was found that the optimum equivalent ratio was formed at the ratio of 1 : 2 or 1 : 3. Under wetting the bonding strength of 1 : 3 ratio was appeared higher than that of 1 : 2 ratio, while the results obtained from hot-water and cyclic boiling shear test were similar.

Far Infrared Drying Characteristics of Seasoned Red Pepper Sauce Dried by Heated Air (1차 열풍건조 한 고추 다진 양념의 원적외선 건조특성)

  • Cho, Byeong Hyo;Lee, Jung Hyun;Kang, Tae Hwan;Lee, Hee Sook;Han, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1358-1365
    • /
    • 2016
  • The purpose of this study was to verify the drying characteristics of seasoned red pepper sauce and establish optimal drying conditions for far infrared drying of seasoned red pepper sauce. Seasoned red pepper sauce, which was dried by heated air, was used. One kg of seasoned red pepper was spread at thicknesses of 10 and 20 mm and dried by a far infrared dryer until a final moisture content of $15{\pm}0.5%$. The far infrared dryer conditions were air velocity of 0.6, 0.8 m/s and drying temperatures of 60, 70, and $80^{\circ}C$. The drying models were estimated using a determination coefficient and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, color changes, content of capsaicinoids, and energy consumption. The results can be summarized as follows. The drying rate (that is, drying time) tended to be reduced as temperature and air velocity for drying increased. The Page and Henderson models were suitable for drying of seasoned red pepper sauce by a far infrared dryer. Redness decreased after far infrared drying under all experimental conditions. The color difference was 18.18 under the following conditions: thickness 20 mm, temperature $70^{\circ}C$, and air velocity 0.8 m/s. This value was slightly higher than those under other far infrared drying conditions. The capsaicinoid properties of seasoned red pepper sauce decreased under all far infrared drying conditions. The highest capsaicin (19.91 mg/100 g) and dihydrocapsaicin (12.87 mg/100 g) contents were observed at a thickness of 10 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. Energy consumption decreased with higher temperature, slower air velocity, and thinner seasoned red pepper sauce.

Hydrogeochemistry of Groundwater Occurring in Complex Geological Environment of Yeongdong Area, Chungbuk, Korea (충북 영동군 복합 지질지역에서 산출되는 지하수의 수리지화학적 특성)

  • Moon, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.445-466
    • /
    • 2017
  • Yeongdong area is located in the contact zone between central southeastern Ogcheon belt and Yeongnam massif, in which Cretaceous Yeongdong basin exists. Therefore, the study area has complex geological environment of various geological age and rock types such as Precambrian metamorphic rocks, age-unknown Ogcheon Supergroup, Paleozoic/Mesozoic sedimentary rocks, Mesozoic igneous rocks and Quaternary alluvial deposits. This study focuses on the link between the various geology and water type, and discussed the source of some major ions and their related water-rock interaction. For this study, the field parameters and ion concentrations for twenty alluvial/weathered and eighty bedrock aquifer wells were used. Statistical analysis indicates that there was no significant differences in groundwater quality between wet and dry seasons. Although various types were observed due to complex geology, 80 to 84 % of samples showed $Ca-HCO_3$ water type. Some wells placed in alluvial/weathered aquifers of Precambrian metamorphic and Jurassic granitic terrains showed somewhat elevated $NO_3$ and Cl concentrations. $Mg-HCO_3$ typed waters prevailed in Cretaceous Yeongdong sedimentary rocks. The deeper wells placed in bedrock aquifers showed complicated water types varying from $Ca-HCO_3$ through $Ca-Cl/SO_4/NO_3$ to $Na-HCO_3$ and Na-Cl type. Groundwater samples with $Na-HCO_3$ or Na-Cl types are generally high in F concentrations, indicating more influences of water-rock interaction within mineralized/hydrothermal alteration zone by Cretaceous porphyry or granites. This study revealed that many deep-seated aquifer had been contaminated by $NO_3$, especially prominent in Jurassic granites area. Based on molar ratios of $HCO_3/Ca$, $HCO_3/Na$, Na/Si, it can be inferred that Ca and $HCO_3$ components of most groundwater in alluvial/weathered aquifer wells were definitely related with dissolution of calcite. On the other hand, Ca and $HCO_3$ in bedrock aquifer seem to be due to dissolution of feldspar besides calcite. However, these molar ratios require other mechanism except simple weathering process causing feldspar to be broken into kaolinite. The origin of $HCO_3$ of some groundwater occurring in Cretaceous Yeongdong sedimentary rock area seems to be from dissolution of dolomite($MgCO_3$) or strontianite($SrCO_3$) as well.