• 제목/요약/키워드: drought resistance

검색결과 126건 처리시간 0.027초

Water Use Efficiency in Five Different Species of One-year-old Seedlings Grown in a Field Nursery in Mongolia

  • Lee, Don-Koo;Park, Yeong-Dae;Batkhuu, Nyam-Osor
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.123-128
    • /
    • 2003
  • This study was conducted to examine the water use efficiency (WUE) in five species of one-year-old seedlings grown in a field nursery in Mongolia. Larix sibirica and Pinus sylvestris are the most dominant coniferous species while Ulmus pumila is an important deciduous species known well-adapted in harsh conditions such as in semi-arid forests and Gobi desert regions. Caragana arborescens (Siberian pea shrub) and Hippophae rhamnoides are N-fixing shrubs in Mongolia. Thirty one-year-old seedlings were sampled from each of the five species (a total of 150 samples) and measured for net photosynthetic rate (Pn) and transpiration rate (E). The Pn and E were used to calculate and compare the WUE of each species. Pn differed significantly among the five species (p < 0.05). However, there was no significant difference in Pn between L. sibirica and H. rhamnoides (p > 0.05). C. arborescens showed the highest Pn whereas U. pumila did the poorest. E differed significantly among the five species (p < 0.05). L. sibirica and U. pumila showed considerably lower E than other species. Thus, WUE values of coniferous species such as L. sibirica and P. sylvestris were significantly greater than deciduous or shrub species such as U. pumila, C. arborescens and H. rhamnoides (p < 0.01). It may result that conifers showed relatively high water use efficiency than deciduous or shrub trees due to their lower transpiration rates, which resulted in morphological and physiological characteristics of their leaves. This may indicate that L. sibirica and P. sylvestris can be widely used for rehabilitation works in Mongolia attributed to their dominant distributions but also their high drought-resistance properties.

  • PDF

기후변화와 농업생산의 전망과 대책 (Climate Change and Coping with Vulnerability of Agricultural Productivity)

  • 윤성호;임정남;이정택;심교문;황규홍
    • 한국농림기상학회지
    • /
    • 제3권4호
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

옥수수의 품질평가 현황과 전망 (Current Status and Prospect of Qauality Evaluation in Maize)

  • 김선림;문현귀;류용환
    • 한국작물학회지
    • /
    • 제47권
    • /
    • pp.107-123
    • /
    • 2002
  • This paper is intented to present a information of various aspects of quality related characteristics and standards for grades in maize. Maize is world's one of the three most popular cereal crops and a primary energy supplement and can contribute up to 30, 60, and 98% of the dairy diet's protein, net energy, and starch, respectively. Maize is also processed into industrial goods by wet or dry milling. Sweet corn is a leader among vegetable crops and its production for fresh or processing markets is a major industry in many countries. Over the years, the combined efforts of breeders and geneticists, biochemists, food scientists, and others have helped bring us to the point where we understand issues related to sweet corn quality. Traditional criteria for selecting corn hybrids have been based primarily on agronomic factors, including grain production, disease resistance, drought tolerance, and storage characteristics. Little emphasis has been placed on the quality and nutritional values of corn. Although there is widespread interest for value-enhanced corns have increased tremendously in the last five years, there is limited information available on the production and comparing the quality attributes of specialty grains with those of normal yellow dent corn. Most countries have developed national maize standards, aiming to provide a framework for trade, both internal and external. Where trading involves direct choice and price negotiation in front of the commodity, grading standards are rarely employed; quality is assessed visually and is influenced by end-use, and the price is determined more by local rather than national factors. The use of an agreed standard will provide an unambiguous description of the quality of the consignment and assist in the formation of a legally-binding contract. Standards can also be seen to protect consumers rights through setting limits to the amount of unsuitable or noxious material.

Expression of Arabidopsis thaliana SIK (Stress Inducible Kinase) Gene in a Potato Cultivar (Solanum tuberosum L. 'Taedong Valley')

  • Yoon Jung-Ha;Fang Yi-Lan;Park Eung-Jun;Kim Hye-Jin;Na Yun-Jeong;Lee Dong-Hee;Yang Deok-Chun;Lim Hak-Tae
    • Plant Resources
    • /
    • 제8권3호
    • /
    • pp.202-208
    • /
    • 2005
  • Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide ($Basta^{(R)}$) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.

  • PDF

Expression of the TaCR1 Gene Induced by Hessian Fly Larval Infestation in Wheat Carrying a H21 Gene.

  • Jang, Cheol-Seong;Seo, Yong-Weon
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.148-153
    • /
    • 2004
  • The Hessian fly, Mayetiola destructor (Say), is known to be one of the major insect herbivores of wheat worldwide. In order to provide molecular events on interactions of the NIL with H21 and larvae of Hessian fly biotype L, the TaCR1 gene, Triticum aestivum cytokinin repressed 1, was isolated through the suppression subtractive hybridization, which was constructed using stems of the NIL with H21 at 6 days after infestation as tester and stems of the recurrent parent Coker797 without H21 at 6 days after infestation as driver. Transcript levels of TaCR1 mRNA in the NIL with H21 were highest at 6 days after infestation but in the Coker797 without H21 until 8 days were similar with those of non-infested plants. Expression of the TaCR1 gene was decreased at early time and then recovered after wounding or $H_2O$$_2$ treatment as well as 6-BAP treatment. Transcripts levels of the TaCR1 gene was changed after MeJA, SA, ethephone, or ABA treatment. In drought treatment, the TaCRl gene were increased at early stage of stress and then decreased at late stage. Expression of the TaCRl gene was continued to decrease through 24 h in the cold treatment. Although the TaCRl gene is increased through infestation in NIL with H21, further study was required to elucidate a role on resistance against larvae of Hessian fly. However, the TaCR1 gene could be used as marker gene on response of plants against abiotic stresses as well as application of plants with several hormones.

Biolistic transformation of Moroccan durum wheat varieties by using mature embryo-derived calli

  • Senhaji, Chaimae;Gaboun, Fatima;Abdelwahd, Rabha;Diria, Ghizlane;Udupa, Sripada;Douira, Allal;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.246-254
    • /
    • 2021
  • Environmental stresses are estimated to have reduced global crop yields of wheat by 5.5%. However, traditional approaches for the transfer of resistance to these stresses in wheat plants have yielded limited results. In this regard, genetic transformation has undoubtedly opened up new avenues to overcome crop losses due to various abiotic stresses. Particle bombardment has been successfully employed for obtaining transgenic wheat. However, most of these procedures employ immature embryos, which are not available throughout the year. Therefore, the present investigation utilized mature seeds as the starting material and used the calli raised from three Moroccan durum wheat varieties as the target tissue for genetic transformation by the biolistic approach. The pANIC-5E plasmid containing the SINA gene for drought and salinity tolerance was used for genetic transformation. To enhance the regeneration capacity and transformation efficiency of the tested genotypes, the study compared the effect of copper supplementation in the induction medium (up to 5 μM) with the standard MS medium. The results show that the genotypes displayed different sensitivities to CuSO4, indicating that the transformation efficiency was highly genotype-dependent. The integration of transgenes in the T0 transformants was demonstrated by polymerase chain reaction (PCR) analysis of the obtained resistant plantlets with primers specific to the SINA gene. Among the three genotypes studied, 'Isly' showed the highest efficiency of 9.75%, followed by 'Amria' with 1.25% and 'Chaoui' with 1%.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향 (Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants)

  • 남상용;권용웅;권순국
    • 한국농공학회지
    • /
    • 제28권2호
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

토양수분이 수수류의 광합성 , 증산량 및 기공저항에 미치는 영향 I. 광합성과 증산량의 계절간 변화 (Effedts soil moisture on Photosythess , Transpiration and Stomatal resistance in Sorghums I. On seasonal changes)

  • 한흥전;류종원
    • 한국초지조사료학회지
    • /
    • 제6권1호
    • /
    • pp.53-59
    • /
    • 1986
  • 수수류의 광합성(光合成), 증산(蒸散), 기공저항(氣孔抵抗)과 건물수량(乾物收量)에미치는 토괴수분(土壞水分)의 영향(影響)을 구명(究明)하고자 수수(Pioneer 931), 수수$\times$수단그라스 교잡종(交雜種)(Pioneer 988)을 포장용수량(圃場容水量)의 100, 80, 60, 40%로 조절(調節)된 대형콘크리트 폿트(길이 14m, 폭 1m, 깊이 1m)에 생육(生育) 시킨후 쾌청한 날을 택(擇)하여 초여름인 6월(月)20일(日), 6월(月)28일(日)과 고온기인 8월(月)18(日), 생육말기(生育末期)인 9월(月)30일(日) 10월(月)4일(日)에 광합성(光合成)을 측정(測定)하였다. 1. 광합성(光合成), 증산(蒸散) 및 기공저항(氣孔抵抗)은 이절간(李節間)에 차이(差異)가 있어 광합성(光合成) 및 증산량(蒸散量)은 8월중순(月中旬) 의 고온기에 최대(最大)로 높았고 10월초(月初)에 가장 낮았다. 2. 전생육기(全生育期)에 걸쳐 포장용수량(圃場容水量)의 60%와 80% 수분구(水分區)가 100%나 40% 수분구(水分區)에 비하여 광합성(光合成) 증산량(蒸散量)이 많고 기공저항이 적었다. 3 환경요인(環境要因)에 의하여 이절간(李節間)에 수분요구도(水分要求度)의 차이(差異)를 보여 초여름과 가을에는 포장용수량의 60%, 고온기에는 $60%\sim80%$로 높게 유지해 주는 것이 식물생장(植物生長)에 좋은 것으로 나타났다. 4. 건조와 과습은 식물(植物)의 생리적대사(生理的代謝) 영향을 미쳐 최적수분조건에 비하여 포장용수량의 100%와 40%수분구에서는 최종건물수량이 70%이상(以上) 감수되었다.

  • PDF