• Title/Summary/Keyword: drought period

검색결과 400건 처리시간 0.032초

아그로박테리움 형질전환법을 이용한 수량증대 유채 식물체 개발 (Agrobacterium-mediated transformation produces transgenic oilseed rape with a high-yield trait)

  • 김종보
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.63-69
    • /
    • 2023
  • 본 연구는 유채(Brassica napus L.)의 배축을 이용하여 수량 증대 유전자인 ORE7 그리고 선발유전자로 제초제저항성을 나타내는 bar 유전자를 Agrobacterium 기법을 이용하여 형질전환 하였다. 효율적인 유채형질전환 기법을 확립하기 위해 한국 유채 '영산' 품종의 배축 절편체를 이용하여 Agrobacterium 접종 시, 20분간의 접종시간 그리고 3일간의 공동배양기간을 적용할 때 100개의 접종된 배축 절편체들로부터 약 32-36개 개체가 PPT (Phosphinothrixin) 20 mg/l 첨가된 선발배지에서 생존하여 높은 형질전환 효율을 보여주었다. 또한 본 연구에서 도입된 선발 및 생산성 증대 유전자 도입 여부를 확인하기 위해 PCR을 수행하여 도입여부를 확인하였다. 또한 생산성 증대 유전자 ORE 7 유전자와 같이 도입된 bar 유전자의 발현여부를 확인하기 위해 0.5% Basta 용액에 처리한 결과, 제초제저항성 형질이 발현됨을 확인하였다. 본 연구결과를 통해 향후 국내 유채품종을 대상으로 Agrobacterium을 이용하여 제초제 저항성, 건조저항성. 생산성 증대 형질 그리고 오일함량 증대 등의 유용형질 개량에 이용되리라 판단된다.

공간군집특성을 고려한 우리나라 물부족 핫스팟 지역 분석 (Spatial analysis of water shortage areas in South Korea considering spatial clustering characteristics)

  • 이동진;김태웅
    • 한국수자원학회논문집
    • /
    • 제57권2호
    • /
    • pp.87-97
    • /
    • 2024
  • 본 연구에서는 국가물관리기본계획의 2030년 물부족량 전망자료를 이용하여 공간군집특성을 고려한 우리나라 물부족 핫스팟 지역을 분석하였다. 물부족 최심 군집지역 도출을 위하여 표준유역 기준의 과거 최대 가뭄(약 50년 빈도)에 대한 물부족량 자료를 이용하여, Local Moran's I와 Getis-Ord Gi* 통계량으로 공간군집분석을 수행하였다. 클러스터맵(Cluster Map)을 통해 물부족 공간군집 대상지역을 선정하고, 공간적 군집 특성은 p-값 및 모란 산점도를 통해 적정성을 검증하였다. 분석 결과, 한강권역 내 1개 군집[임진강하류(#1023) 및 주변]과 낙동강권역 내 2개 군집 [대종천(#2403) 및 주변, 가화천(#2501) 및 주변] 지역이 물부족이 심각한 핫스팟 지역으로 나타났으며, 한강권역 내 1개 군집[남한강하류 (#1007) 및 주변]과 낙동강권역 내 1개 군집[병성천(#2006) 및 주변] 지역이 물부족 HL (해당지역은 물부족량이 많고 주변지역은 물부족량이 적은) 지역으로 나타났다. 표준유역단위 공간군집분석을 수행할 경우 물부족 공간군집지역 전체가 통계량 기준을 100% 만족하여 통계적으로 유의미한 결과가 도출되었다. 이는 표준유역 단위로 공간군집분석을 할 경우 가변적 공간단위 문제를 일정 부분 해결한 것으로 공간군집분석의 정확성이 상대적으로 높아졌다.

논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I) (Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice)

  • 류한열;김철기
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

당근 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 N2O 배출 특성 (Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Carrot Cultivation)

  • 양상호;강호준;이신찬;오한준;김건엽
    • 한국토양비료학회지
    • /
    • 제45권3호
    • /
    • pp.459-465
    • /
    • 2012
  • 본 연구는 당근 재배 화산회 토양에서 질소시비 수준 및강우, 온도 환경 변화에 따른 $N_2O$ 발생 양상 특성 구명하기 위하여 제주특별자치도농업기술원 시험포장에서 2년간(2010~2011년) 수행되었다. 당근 재배기간 동안 $N_2O$ 배출량은 질소시비량이 많을수록 많았다. 대체적으로 $N_2O$ 배출량은 강우량 많은 시기인 재배 초기와 중기에 많았으나, 강우가 적고 한발 시기인 재배 말기에는 매우 적거나 거의 없는 경향을보였다. $N_2O$ 배출 양상은 강우 패턴 및 토양수분함량 변화와 대체로 유사한 경향을 보였다. $N_2O$ 배출량과 상관관계($r$)를 분석한 결과, '10년도에는 토양수분, 토양온도는 각각 $0.5718^{**}$, $0.4908^{**}$로 유의성이 인정되었으나, 토양 EC는 0.2704로 유의성은 인정되지 않았다. '11년도에는 토양수분은 $0.3394^*$로 유의성이 인정되었으나, 토양온도와 토양 EC는 각각 0.2138, 0.2462로 유의성은 인정되지 않았다. $NO_3$-N 및 토양 질소($NO_3-N+NH_4-N$)와는 각각 0.0575, 0.0787로 유의성이 인정되지 않았다. 당근 재배기간 동안 질소시비량에 의하여 배출된 2개년 평균 배출계수는 0.0025 $N_2O$-N kg / N kg으로 추정되었으며, IPCC (0.0100 $N_2O$-N kg / N kg) 배출계수 보다 약 4배 낮았다.

미래 기후변화와 토지이용변화가 안성천 공도 도시성장 유역의 수문에 미치는 영향 평가 (Assessment of future climate and land use changes impact on hydrologic behavior in Anseong-cheon Gongdo urban-growing watershed)

  • 김다래;이용관;이지완;김성준
    • 한국수자원학회논문집
    • /
    • 제51권2호
    • /
    • pp.141-150
    • /
    • 2018
  • 본 연구의 목적은 안성천 상류 공도유역($366.5km^2$)을 대상으로 SWAT 모형을 이용하여 미래 기후변화 평가에 있어, 미래의 토지이용변화를 동시에 고려하면 수문학적 거동에 얼마나 영향을 주는지를 분석하고자 하였다. 미래기후변화 시나리오는 HadGEM3-RA의 RCP 4.5와 8.5 시나리오를 이용하여 2030s (2020-2039)과 2050s (2040-2059) 기간으로 나누어 적용하였으며, 토지이용변화는 도시성장 시나리오에 따른 회귀모형 기반의 CLUE-s 모델을 이용하였다. 기준년(1976-2005) 대비 미래 강수량은 RCP 4.5에서 2030s에 최대 5.7%의 감소, 2050s에는 최대 18.5% 증가하였고, 미래 기온은 2030s RCP 4.5에서 최대 $1.8^{\circ}C$, 2050s RCP 8.5에서 최대 $2.6^{\circ}C$ 증가하였다. 미래 토지이용은 2050년 도시지역이 58.6% ($29.0km^2$에서 $46.0km^2$) 증가하는 것으로 예측되었다. SWAT 수문 검보정은 14년(2002-2015) 동안의 공도관측소 일유량 자료를 이용하였으며, 저유량 모델효율의 향상을 위하여 2014-2015년 연속 가뭄년을 대상으로 보정을 실시한 결과, 하천유량(Q)과 1/Q을 대상으로 Nash-Sutcliffe 모델효율은 각각 0.86과 0.76이었다. 미래 기후변화 시나리오만을 적용한 결과, 하천유출량이 2030s RCP 4.5에서 최대 24.2% 감소하다가 2050s RCP 4.5에서 최대 10.9% 증가하는 변화를 보여주었다. 한편, 기후변화와 더불어 미래의 토지이용변화를 함께 고려한 경우는 하천유출량이 2030s RCP 4.5에서 최대 14.9% 감소, 2050s RCP 4.5에서 최대 19.5% 증가하는 변화를 보여주어, 미래 기후변화에 따른 유역의 수문평가 시, 도시성장이 기대되는 유역 등 미래의 토지이용변화가 클 가능성이 있는 유역에 대해서는 토지이용변화 요소를 고려할 필요가 있다고 생각된다.

조선시대(朝鮮時代) 도작농업(稻作農業)의 발전(發展)과 인구증가(人口增加) (Rice Cultivation and Demographi Development in Korea : 1429-1918)

  • 이호철
    • Current Research on Agriculture and Life Sciences
    • /
    • 제7권
    • /
    • pp.201-219
    • /
    • 1989
  • Rice culture in Korea has a long history ranging over two thousand years. In the agriculture economy of pre-mordern Korea, however, its importantce was not as great as generally assumed. In fact, rice culture reached full development only after the 1920s when the Japanese colonial government carried out its drive to increase rice production in the Korea peninsula. It was not until the mid-1930s that rice became the staple in Korean diet. This can be attributed to two factors : (1) a mountainous topography that provides little irrigated fields and (2) a climate characterized by droughts in spring and heavy precipitation in summer. The present paper attempts to answer some of these questions. Specifically it will focus on these : Did the development of rice culture actually result in population growth? What are the salient features of agricultural develdpment and population grow in traditional Korea? Does the case of Korea conform the prevailing generalization about the agriculture in East Asia? I have discussed the development of rice culture and population growth in the Chos$\breve{o}$n dynasty, focusing on the relation between the rapid spread of transplanting and the rapid growth of population from the seventeenth to the nineteenth century. Here are my conclusions. (1) The spread of transplanting and other technological innovationsc contributed to the rapid growth of population in this period. However, we should also note that the impact of rice culture on population growth was rather limited, for rice culture was not the mainstay of agricultural economy in pre-modern Korea. Indeed we should consider the influence of dry field cropsn population growth. Nevertheless, it is obvious that the proliferation of rice culture was a factor crucial to population growth and regional concentration. (2) How should we characterize the spread of rice culture in the whole period? Evidently rice culture spread from less then 20% of cultivated fields in the fifteenth century to about 36% of them in the early twentieth century. Although rice as a single crop outweighed other crops, rice culture was more then counter-balanced by dry field crops as a whole, due to Korea's unique climate and geography. Thus what we have here in not a typical case of competition between rice culture and day field culture. Besides, the spread of rice culture in the seventeenth and eighteenth centuries accomplished by technological innovations that overcame severe springtime drought, rather than extensive irrigation. Althougt irrigarion facilities did proliferate to some extent, this was achieved by local landlords and peasants rather than the state. This fact contradicts the classical thesis that the productivity of rice culture increased through the state management of irrigation and that this in turn determined the type of society. (3) We should further study other aspects of the transition from the stable population and production struture in the fifteenth and sixteenth centuries to the rapid population growth and excessive density of population thereafter. We should note that there were continuing efforts to reclaim the land in order to solve the severe shortage of land. Changes also took place in the agricultural production relations. The increase in land producrivity developed tenancy based on rent in kind, and this in turn increased the independence of tenants from their landlords. There were changes in family relations-such as the shift to primogeniture as an effort to prevent progressive division of property among multiplying offspring. The rapid population growth also produced a great mass of propertyless farm laborers. These changes had much to do with the disintegration of traditional social institutions and political structure toward the end of the Chos$\breve{o}$n dynasty.

  • PDF

낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 - (Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea)

  • 박순;윤한삼;이인철;김헌태
    • 해양환경안전학회지
    • /
    • 제14권2호
    • /
    • pp.111-117
    • /
    • 2008
  • 본 연구는 최근 11년간 (1996년${\sim}$2006년)의 낙동강 하구둑 방류량 자료를 바탕으로 하구둑 방류량의 경년변동 및 월별특성 즉, 낙동강 하구둑 월별총방류량, 일일평한방류량, 일일최대방류량을 산출하였으며, 하구둑 방류와 하천수 유입에 직접적인 영향을 미치는 기상인자들과의 상관성을 검토하였다. 본 연구를 통해 얻어진 결과는 다음과 같다. (1) 낙동강 하구둑으로부터의 11년간 총 방류량은 $224,576.8{\times}10^6m^3$이며 가장많이 방류된 연도는 2003년으로 $56,292.3{\times}10^6m^3$이다. 월별로는 8월이 23.4%의 $52,634.2{\times}10^6m^3$으로 가장 많고 7월이 23.1%, 9월이 17.0%의 순이었다. (2) 방류량 패턴을 시기별로 살펴보면 $7{\sim}9$월은 유하량이 많은 홍수기(방류란 $100{\times}10^6m^3$/day이상), $4{\sim}6$월 및 10월은 유하량이 보통수준인 평수기(방류량 $30{\times}10^6m^3$/day이상), $12{\sim}3$월은 유하량이 적은 갈수기(방류량 $16{\times}10^6m^3$/dayy미만)로 구분할 수 있다. (3) 방류량과 기상인자와의 상관성 비교에 있어서는 대체로 기온이 높고 증발량이 적으며 일조시간이 적은 시기에 많은 방류가 이루어짐을 알 수 있다 (4) 방류량이 많을 경우 주 풍향은 NNE 및 SW, SSW 였다. 이러한 결과는 풍항에 따른 취송류의 영향으로 북풍이 불 경우 담수의 하구 집적화와 남풍이 불 경우 담수가 외해로 유출될 가능성이 높음을 시사한다.

  • PDF

SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석 (Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX)

  • 김용원;이지완;김성준
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.905-916
    • /
    • 2018
  • 본 연구의 목적은 금강유역($9,645.5km^2$)을 대상으로 극한 기후변화 사상에 따른 수문 및 유황의 변동을 평가하는 것이다. 본 연구에서는 객관적인 극한 기후변화 사상을 평가하기 위해 강우관련 극한지수(STARDEX)를 적용하고, GCM 10개의 RCP 8.5 기후변화 시나리오에 대해 4개의 평가기간별(Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100)로 분석하였다. 분석 결과 5개의 습윤(CESM1-BGC, HadGEM2-ES), 중간(MPI-ESM-MR) 건조(INM-CM4, FGOALS-s2) 극한 기후변화 사상 시나리오를 선정하여 SWAT 모형에 적용하였다. 2080s 기간에서 중간시나리오 대비 2080s의 증발산은 -3.2~+3.1 mm로 변화하였고, 2080s의 총 유출량은 $+5.5{\sim}+128.4m^3/s$ 변화하였다. 건조한 시나리오의 경우 2020s 중간시나리오대비 큰 변화를 보였다. 건조한 시나리오에서의 2020s의 증발산량은 -16.8~-13.3 mm의 변화를 보였고, 총 유출량은 $-264.0{\sim}132.3m^3/s$의 변화를 보였다. 유황 변동의 경우, 2080s 기간의 습윤한 시나리오에서 CFR은 +4.2~+10.5, 2020s 기간의 건조한 시나리오에서는 +1.7~2.6으로 변화 하였다. 극한 기후변화 시나리오를 적용한 금강유역의 수문인자의 변화에 따라 유황분석을 실시한 결과, INM-CM4는 극한 건조상태를 나타내기에 적절한 시나리오로 나타났고 FGOALS-s2는 유황변동이 큰 가뭄 상태 분석에 적절한 시나리오로 나타났다. HadGEM2-ES는 유황변동이 작게 나타났기 때문에 최대유량 분석 시 활용 가능한 시나리오로 평가되었고, CESM1-BGC의 경우 유황변동이 큰 것으로 나타나 극한 홍수 분석 시 적용할 수 있는 시나리오로 평가되었다.

산업관련표(産業關聯表)에 의(依)한 임업구조분석(林業構造分析)과 유발생산액(誘發生産額) -임업(林業)이 한국경제(韓國經濟)에 미치는 영향(影響)- (Analysis of Forestry Structure and Induced Output Based on Input - output Table - Influences of Forestry Production on Korean Economy -)

  • 이승윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제2권4호
    • /
    • pp.4-14
    • /
    • 1974
  • The total forest land area in Korea accounts for some 67 percent of the nation's land total. Its productivity, however, is very low. Consequently, forest production accounts for only about 2 percent of the gross national product and a minor proportion of no more than about 5 percent versus primary industry. In this case, however, only the direct income from forestry is taken into account, making no reference to the forestry output induced by other industrial sectors. The value added Or the induced forestry output in manufacturing the primary wood products into higher quality products, makes a larger contribution to the economy than direct contribution. So, this author has tried to analyze the structure of forestry and compute the repercussion effect and the induced output of primary forest products when utilized by other industries for their raw materials, Hsing the input-output table and attached tables for 1963 and 1966 issued by the Bank of Korea. 1. Analysis of forestry structure A. Changes in total output Durng the nine-year period, 1961-1969, the real gross national product in Korea increased 2.1 times, while that of primary industries went up about 1. 4 times. Forestry which was valued at 9,380 million won in 1961, was picked up about 2. 1 times to 20, 120 million won in 1969. The rate of the forestry income in the GNP, accordingly, was no more than 1.5 percent both in 1961 and 1962, whereas its rate in primary industries increased 3.5 to 5.4 percent. Such increase in forestry income is attributable to increased forest production and rise in timber prices. The rate of forestry income, nonetheless, was on the decrease on a gradual basis. B. Changes in input coefficient The input coefficient which indicates the inputs of the forest products into other sectors were up in general in 1966 over 1963. It is noted that the input coefficient indicating the amount of forest products supplied to such industries closely related with forestry as lumber and plywood, and wood products and furniture, showed a downward trend for the period 1963-1966. On the other hand, the forest input into other sectors was generally on the increase. Meanwhile, the input coefficient representing the yolume of the forest products supplied to the forestry sector itself showed an upward tendency, which meant more and more decrease in input from other sectors. Generally speaking, in direct proportion to the higher input coefficient in any industrial sector, the reinput coefficient which denotes the use of its products by the same sector becomes higher and higher. C. Changes in ratio of intermediate input The intermediate input ratio showing the dependency on raw materials went up to 15.43 percent m 1966 from 11. 37 percent in 1963. The dependency of forestry on raw materials was no more than 15.43 percent, accounting for a high 83.57 percent of value added. If the intermediate input ratio increases in any given sector, the input coefficient which represents the fe-use of its products by the same sector becomes large. D. Changes in the ratio of intermediate demand The ratio of the intermediate demand represents the characteristics of the intermediary production in each industry, the intermediate demand ratio in forestry which accunted for 69.7 percent in 1963 went up to 75.2 percent in 1966. In other words, forestry is a remarkable industry in that there is characteristics of the intermediary production. E. Changes in import coefficient The import coefficient which denotes the relation between the production activities and imports, recorded at 4.4 percent in 1963, decreased to 2.4 percent in 1966. The ratio of import to total output is not so high. F. Changes in market composition of imported goods One of the major imported goods in the forestry sector is lumber. The import value increased by 60 percent to 667 million won in 1966 from 407 million won in 1963. The sales of imported forest products to two major outlets-lumber and plywood, and wood products and furniture-increased to 343 million won and 31 million won in 1966 from 240million won and 30 million won in 1963 respectively. On the other hand, imported goods valued at 66 million won were sold to the paper products sector in 1963; however, no supply to this sector was recorded in 1963. Besides these major markets, primary industries such as the fishery, coal and agriculture sectors purchase materials from forestry. 2. Analysis of repercussion effect on production The repercussion effect of final demand in any given sector upon the expansion of the production of other sectors was analyzed, using the inverse matrix coefficient tables attached to the the I.O. Table. A. Changes in intra-sector transaction value of inverse matrix coefficient. The intra-sector transaction value of an inverse matrix coefficient represents the extent of an induced increase in the production of self-support products of the same sector, when it is generated directly and indirectly by one unit of final demand in any given sector. The intra-sector transaction value of the forestry sector rose from 1.04 in 1963 to 1, 11 in 1966. It may well be said, therefore, that forestry induces much more self-supporting products in the production of one unit of final demand for forest products. B. Changes in column total of inverse matrix coefficient It should be noted that the column total indicates the degree of effect of the output of the corresponding and related sectors generated by one unit of final demand in each sector. No changes in the column total of the forestry sector were recorded between the 1963 and 1966 figures, both being the same 1. 19. C. Changes in difference between column total and intra-sector transaction amount. The difference between the column total and intra-sector transaction amount by sector reveals the extent of effect of output of related industrial sector induced indirectly by one unit of final demand in corresponding sector. This change in forestry dropped remarkable to 0.08 in 1966 from 0.15 in 1963. Accordingly, the effect of inducement of indirect output of other forestry-related sectors has decreased; this is a really natural phenomenon, as compared with an increasing input coefficient generated by the re-use of forest products by the forestry sector. 3. Induced output of forestry A. Forest products, wood in particular, are supplied to other industries as their raw materials, increasng their value added. In this connection the primary dependency rate on forestry for 1963 and 1966 was compared, i. e., an increase or decrease in each sector, from 7.71 percent in 1963 to 11.91 percent in 1966 in agriculture, 10.32 to 6.11 in fishery, 16.24 to 19.90 in mining, 0.76 to 0.70 in the manufacturing sector and 2.79 to 4.77 percent in the construction sector. Generally speaking, on the average the dependency on forestry during the period 1963-1966 increased from 5.92 percent to 8.03 percent. Accordingly, it may easily be known that the primary forestry output induced by primary and secondary industries increased from 16, 109 million won in 1963 to 48, 842 million won in 1966. B. The forest products are supplied to other industries as their raw materials. The products are processed further into higher quality products. thus indirectly increasing the value of the forest products. The ratio of the increased value added or the secondary dependency on forestry for 1963 and 1966 showed an increase or decrease, from 5.98 percent to 7.87 percent in agriculture, 9.06 to 5.74 in fishery, 13.56 to 15.81 in mining, 0.68 to 0.61 in the manufacturing sector and 2.71 to 4.54 in the construction sector. The average ratio in this connection increased from 4.69 percent to 5.60 percent. In the meantime, the secondary forestry output induced by primary and secondary industries rose from 12,779 million Wall in 1963 to 34,084 million won in 1966. C. The dependency of tertiary industries on forestry showed very minor ratios of 0.46 percent and 0.04 percent in 1963 and 1966 respectively. The forestry output induced by tertiary industry also decreased from 685 million won to 123 million won during the same period. D. Generally speaking, the ratio of dependency on forestry increased from 17.68 percent in 1963 to 24.28 percent in 1966 in primary industries, from 4.69 percent to 5.70 percent in secondary industries, while, as mentioned above, the ratio in the case of tertiary industry decreased from 0.46 to 0.04 percent during the period 1963-66. The mining industry reveals the heaviest rate of dependency on forestry with 29.80 percent in 1963 and 35.71 percent in 1966. As it result, the direct forestry income, valued at 8,172 million won in 1963, shot up to 22,724 million won in 1966. Its composition ratio lo the national income rose from 1.9 percent in 1963 to 2.3 per cent in 1966. If the induced outcome is taken into account, the total forestry production which was estimated at 37,744 million won in 1963 picked up to 105,773 million won in 1966, about 4.5 times its direct income. It is further noted that the ratio of the gross forestry product to the gross national product. rose significantly from 8.8 percent in 1963 to 10.7 percent in 1966. E. In computing the above mentioned ratio not taken into consideration were such intangible, indirect effects as the drought and flood prevention, check of soil run-off, watershed and land conservation, improvement of the people's recreational and emotional living, and maintenance and increase in the national health and sanitation. F. In conclusion, I would like to emphasize that the forestry sector exercices an important effect upon the national economy and that the effect of induced forestry output is greater than its direct income.

  • PDF

CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토 (Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model)

  • 장은경;지운;권용성;여운광
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2211-2221
    • /
    • 2013
  • 4대강 살리기 사업을 통해 가뭄 및 홍수문제를 예방하고 수질개선 및 종합적인 물 관리를 위해 4대강에 다수의 보가 설치되었다. 그러나 보의 설치로 인해 상류로부터 유입되는 유속이 감소되어 유입된 유사의 이송능력 또한 저하됨으로써 보 상류구간에서의 하상변화가 발생한다. 특히 함안보는 낙동강에 설치된 8개의 보 중 낙동강 최하류단에 설치되어 완만한 경사와 유속 감소로 인해 하상변동 및 지속적인 퇴사문제와 더불어 하상의 불안정화가 더욱 클 것으로 예상된다. 이에 본 연구에서는 2차원 모형인 CCHE2D를 이용하여 함안보 설치에 따른 보 상류에서의 흐름 및 하상변동 분석을 실시하고 이를 통해 하상의 안정화를 위한 방안들의 정량적인 평가를 실시하였다. 함안보 설치 후 흐름 및 하상변동 모의 결과, 모든 모의유량 조건에서 초기하상에서의 유속이 일정 지속기간이 지난 후 하상에서의 유속보다 빠르게 나타났으며, 전체 모의구간에서 하상변동이 크게 발생한 지점의 위치가 모든 적용유량에 대해 동일하게 나타났다. 이에 따라 하상안정화를 위해 하류단 수위를 함안보 관리수위 5.0 m에서 4.5 m로 저하시킬 경우, 유속분포는 관리수위일 때보다 전반적으로 빠르게 나타났으며 하폭이 가장 좁은 지점에서의 침식현상은 하류단 수위저하에 관계없이 지속적으로 나타났다. 이에 본 연구에서는 하폭이 가장 좁은 지형의 하폭을 확대시키는 방법을 제안하였으며 수치모의 분석 결과, 하폭 확대 후 지형에서 지속적인 침식이 예상되는 구간에서의 하상변동은 거의 발생하지 않아 하상의 안정화 효과가 있는 것으로 나타났다.