• 제목/요약/키워드: droplet's size

검색결과 152건 처리시간 0.025초

소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성 (Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure)

  • 정훈;김정수
    • 한국추진공학회지
    • /
    • 제12권5호
    • /
    • pp.1-8
    • /
    • 2008
  • 소형 액체로켓엔진 인젝터 분무의 공간분포 특성 규명을 위해 이중모드 위상도플러속도계(DPDA)를 이용한다. 분사압력 및 분무확산방향 이동거리를 변화시켜 분무액적의 크기, 속도 등을 측정하고, 산술평균직경(AMD), Sauter 평균직경(SMD), 수밀도, 스팬(span of drop size distribution), 그리고 체적 유속(volume flux) 등의 분무 매개변수를 도출하여 인젝터 분무의 분열특성을 고찰한다. 분사압력이 증가함에 따라 분무액적의 수밀도, 스팬, 그리고 체적 유속은 증가하지만, AMD는 감소하였다.

혼합 계면활성제를 이용한 Chlorosulfonated Polyethylene (CSM) Rubber의 유화안정성 연구 (Stabilization of Chlorosulfonated Polyethylene (CSM) Rubber Emulsion with Surfactant Mixture)

  • 이은경;최세영;박수진
    • Elastomers and Composites
    • /
    • 제36권4호
    • /
    • pp.246-254
    • /
    • 2001
  • 본 연구에서는 CSM 고무를 유화하기 위하여 계면화학적 성질을 이용한 반전유화법과 계면활성제로서 비이온 및 음이온 계면활성제를 혼합 사용하였다. 단독계면활성제를 사용하였을 때에는 에멀젼의 분리가 발생하였고, 비이온 계면활성제 Span 60과 음이온 계면활성제 SLS를 혼합 사용하는 경우에는 상의 분리가 발생하지 않았다. 그러므로 혼합계면활성제를 사용하여 제조한 에멀젼의 droplet size, 전단속도에 따른 점도 및 전단응력과 같은 유변학적 거동을 통하여 에멀젼의 안정성을 규명하였다. 혼합계면활성제의 양에 따라 droplet size는 감소하였고, 이에 점도는 증가하였으며, 전단속도에 따른 점도 및 전단응력 측정결과 각각 non-Newtonian 흐름인 shear thinning 거동과 항복응력 값을 보였다. 이러한 실험결과인 유변학적 거동으로부터 CSM 고무를 유화하기 위해서는 반전유화법과 혼합계면활성제를 사용함으로써 에멀젼의 안정성을 향상시켰음을 확인할 수 있었다.

  • PDF

액적의 속도 측정을 위한 이색 PIV 알고리즘 연구 (The Study on Two-color PIV Algorithm for a Measurement of Droplet Velocity)

  • 이기형;이창식;오승익
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.13-18
    • /
    • 1999
  • It has been known that spray characteristics have an important effect on the mixture formation and directly influence the engine performances and the emissions. Up to now, the measurement of droplet size is well developed such as PDPA and PMAS though the behavior of small droplets during secondary atomization is not clear. Particle image velocimetry(PIV), a planar measuring technique, is a very efficient tool for studying complicated behavior and a fast and reliable method to track numerous droplets during injection. In this study, two-color scanning PIV is designed to obtain quasi-instantaneous two dimensional velocity data by using he-ion laser, rotating mirror and beam splitter. This PIV method which has high temporal and spatial resolution provides the information about the small complex droplet behavior.

  • PDF

아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화 (Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method)

  • 이서영;진병석
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.487-492
    • /
    • 2019
  • 주름 개선을 위한 활성물질인 아데노신의 경피 투과를 위해 나노 플렉시블 베시클에 포집을 시도하였다. 나노 플렉시블 베시클은 인지질, 에탄올, lysolecithin으로 구성되는데, 수화 과정에서 형성된 액정 상을 물속에 분산시켜 만드는 액정형 베시클이다. 본 연구에서는 베시클 입자크기에 영향을 미치는 요인을 알아보기 위하여 실험계획법 중 하나인 다구찌 방법을 적용하였다. 다구찌 직교 배열을 활용하여 베시클 입자크기에 대한 망소 특성의 S/N 비를 산출하였다. 베시클 구성성분에서 에탄올과 lysolecithin 비율, 수화 과정에서 투입되는 수용액 양 등이 베시클 입자크기에 큰 영향을 미치는 주요 인자들이고, ANOVA 분석을 통해 이들 인자가 신뢰수준 95%에서 유의함을 확인하였다.

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 (Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

Preliminary Study on the Cloud Condensation Nuclei (CCN) Activation of Soot Particles by a Laboratory-scale Model Experiments

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권4호
    • /
    • pp.175-183
    • /
    • 2014
  • To visually and chemically verify the rainout of soot particles, a model experiment was carried out with the cylindrical chamber (0.2 m (D) and 4 m (H)) installing a cloud drop generator, a hydrotherometer, a particle counter, a drop collector, a diffusing drier, and an artificial soot particle distributer. The processes of the model experiment were as follows; generating artificial cloud droplets (major drop size : $12-14{\mu}m$) until supersaturation reach at 0.52%-nebulizing of soot particles (JIS Z 8901) with an average size of $0.5{\mu}m$-counting cloud condensation nuclei (CCN) particles and droplets by OPC and the fixation method (Ma et al., 2011; Carter and Hasegawa, 1975), respectively - collecting of individual cloud drops - observation of individual cloud drops by SEM - chemical identifying of residual particle in each individual droplet by SEM-EDX. After 10 minutes of the completion of soot particle inject, the number concentrations of PM of all sizes (> $0.3{\mu}m$) dramatically decreased. The time required to return to the initial conditions, i.e., the time needed to CCN activation for the fed soot particles was about 40 minutes for the PM sized from $0.3-2.0{\mu}m$. The EDX spectra of residual particles left at the center of individual droplet after evaporation suggest that the soot particles seeded into our experimental chamber obviously acted as CCN. The coexistence of soot and mineral particle in single droplet was probably due to the coalescence of droplets (i.e., two droplets embodying different particles (in here, soot and background mineral particles) were coalesced) or the particle capture by a droplet in our CCN chamber.

스월유동이 분무특성에 미치는 영향에 관한 연구 (Study on the Effect of Swirl Flow on Spray Characteristics)

  • 최승환;전충환;장영준
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.14-20
    • /
    • 2002
  • It is well known that the flow and spray characteristics is critical factor on the performance and emission of a direct injection diesel engine. So this study aims to investigate the interaction of flow and spray characteristics. At first, in cylinder flow distributions in swirl adaptor for 4-valve cylinder head of DI Diesel engine were investigated under steady conditions for different SCV angles mounted on the cylinder head with steady rig test and 2-D LDV. And the in-cylinder flow was quantified in terms of mean flow coefficient and swirl ratio/tumble ratio. It was found that the swirl ratio is controlled between 2.3 and 3.8. Then spray characteristics of the intermittent injection were investigated. PDA system was utilized for measurement of a droplet size and velocity. The analyses of the PDA results are carried out with Time Dividing Method. It was found that there is a correlation between the swirl flow and SMD. The droplet size and the velocity were nearly constant value with each SCV angle. And the swirl ratio is higher, SMD smaller. The swirl ratio was helpful factor to the atomization of droplet.

  • PDF

분위기 조건이 직접 분사식 가솔린 분무의 발달 과정 및 미립화 특성에 미치는 영향 (Effect of ambient conditions on the spray development and atomization characteristics of a gasoline spray injected through a direct injection system)

  • 하성용
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the effects of ambient pressure on atomization characteristics of high-Pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. In order to investigate the atomization process numerically, the LISA-DDB hybrid model was utilized. This breakup model assumes that the primary breakup occurs when the amplitude of the unstable waves is equal to the radius of the ligament of liquid sheet near the nozzle and the droplet deformation induces the secondary breakup. The results provide the effect of ambient pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is also revealed that the accuracy of prediction of LISA-DDB hybrid model is pretty good in terms of spray developing process, spray tip penetration, and SMD distribution.

  • PDF

전기수력학적 미립화에서 교류 주파수가 액적 분열에 미치는 영향 (Influence of AC Frequency on the Liquid Breakup in Electrohydrodynamic Atomization)

  • 성기안;이창식
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.41-49
    • /
    • 2004
  • Liquid breakup under the variation of AC frequency has been studied experimentally in the electrohydrodynamic atomization. The effect of parameters such as charging voltage, flow rate, nozzle tip inner diameter and power frequency have been considered. This work was performed to investigate the experimental analysis for the effect of AC frequency on breakup process, the mapping of occurrence of disintegration region, and the relationship between the applied power and the droplet radius. The experimental results show that the increase of applied voltage in a certain frequency band leads to a reduction in the droplet size within the limits from 50Hz to 400Hz. The transition phenomena from dripping mode to spindle mode were observed under the band of sudden fall of droplet radius changing ratio, and the synchronous region were produced within the range of applied voltage from 5kV to 6kV.

  • PDF