• Title/Summary/Keyword: droplet's size

Search Result 152, Processing Time 0.028 seconds

Effect of Swirl Angle on the Atomization Characteristics in Twin-Fluid Nozzle with Dual Air Supplying (이중공기공급 2-유체 노즐의 선회각 변화에 따른 미립화 특성)

  • Woo, J.M.;Kim, E.S.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The atomization characteristics of the dual air supplying two-fluid nozzle were investigated experimentally using PIV and PDA systems. The twin-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air, and the main nozzle to produce sprays. The main nozzle has the swirler with four equally spaced tangential slots, which gives the injecting fluid an angular momentum. The swirl angle in the swirler varied with $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The ratios of carrier air to assist air and ALR (total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the AMD and SMD distributions of the sprays were measured using PDA system. As a result, the SMD distribution increases along the radial distance, and it decreases with the increase of swirl angle in swirler.

  • PDF

Characteristics of Internal Flow and Fuel Spray in a Fuel Nozzle Orifice (연료노즐의 내부유동 및 외부분무 특성)

  • Hong, S.T.;Park, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 1996
  • The nozzle geometry and up-stream inject ion condition affect the characteristics of flow inside the nozzle. such as turbulence and cavitation bubbles. Flow details in fuel nozzle orifice with sudden contraction of cross sectional area have been investigated both experimentally and numerically. The measurements of velocities of internal flow in a scaled-up nozzle with different length to diameter rat io(L/d) were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The turbulent intensity and turbulence kinetic energy in a sharp inlet nozzle were higher than that in a round inlet nozzle. Calculations were also performed for the same nozzles as scaled-up experimental nozzles using the SIMPLE algorithm. External spray behavior under different nozzle geometry and up-stream flow conditions using Doppler technique and visualization technique were also observed.

  • PDF

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

Analysis of Long-term Variations of Sunshine Duration and Precipitation Intensity Using Surface Meteorological Data Observed in Seoul and Busan in Korea (서울과 부산에서 관측된 일조 시간 및 강수 강도의 장기 변동 분석)

  • Lee, Hyo-Jung;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2009
  • In other to interpret the long-term variations of sunshine duration, cloud lifetime, and precipitation intensity observed in and around Seoul and Busan for the period from 1986 to 2005, aerosol indirect effect was employed and applied. For the identification of long-term trend of aerosol concentration, observed visibility and AOT of AERONET sunphotometer data were also used over the same regions. The result showed that the time series of visibility was decreased and those of AOT increased, especially trends were remarkable in 2000s. In both regions, occurrence frequencies of observed cloudiness (cloud amount ${\leq}6/10$) and strong precipitation (rain rate > $0.5mmhour^{-1}$) have been steadily increased while those of cloudiness (cloud amount > 7/10) and weak precipitation (rain rate ${\leq}0.2mmhour^{-1}$) decreased. These results are corresponding to the trend of both visibility and AERONET data, implying the aerosol indirect effect that makes size of cloud droplet reduce, cloud life-time longer and precipitation efficiency decreased. Our findings demonstrate that, although these phenomena are not highly significant, weather and climate system over Korean urban area have been changed toward longer lifetime of small cloudiness and increasing precipitation intensity as a result of increased aerosol indirect effect.

Numerical Analysis of Flow Characteristics of the Filter for Separating Oil Mist from Blow-by Gas (블로바이 가스 내 오일입자들을 제거하기 위한 필터의 유동특성 수치해석)

  • Yun, Jeong-Eui;Chae, Kangseog;Kang, Hyukjin;Chung, Doyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.549-555
    • /
    • 2016
  • This research was performed to determine the oil separation characteristics of the specially designed oil filter installed in a PCV cylinder head passage. The oil filter was specially designed with fleece for separating oil mist from blow-by gas. The fleece, made of fiber fabric material, is placed in the oil filter case to absorb oil mist with a small pressure drop during blow-by gas through the filter. To do this, 3-D CFD analysis was simulated for the simplified PCV system with the oil filter using the commercial code, Ansys CFX. Results showed that the oil filter's efficiency with fleece sharply increased as oil droplet size increased.

Improvements to the RELAP5/MOD3 Reflood Model and Assessment (RELAP5 /MOD3 재관수 모델의 개선 및 평가)

  • Chung, B.D.;Lee, Y.J.;Park, C.E.;Choi, C.J.;Hwang, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.265-276
    • /
    • 1994
  • Several improvements to the RELAP5/MOD3 reflood model hate been made. These improvement were made to correct deficiencies in the reflood model identified by the assessment of the RELAP5/MOD3 code against FLECHT-SEASET experiments. The improvements consist of modification of reflood wall heat transfer package and adjusting the droplet size in dispersed flow regime. The time smoothing of wall vaporization and level tracking of transition flow are also added to eliminate the pressure spikes and level oscillation during reflood process. Assessment of the improved model against FLECHT-SEASET experimental data and application of LBLOCA analysis for plant shows that the deficiencies have been corrected.

  • PDF

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

DEVELOPMENT OF AUTOMATIC AIR BLAST WATERING MACHINE FOR MUSHROOM GROWING

  • Choe, K.J.;Park, H.J.;Park, K.K.;Lee, S.H.;Yu, B.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.613-622
    • /
    • 2000
  • Watering operation for oyster mushroom growing houses is regarded as drudgery and time consuming farm operation for growers. Most of mushroom growing beds in oyster mushroom growing houses are designed as two-row with four floor beds, therefore the watering and ventilation between the bed floors are much difficult for farmers because of its structural design. The study aimed to reduce the watering operation and improve the mushroom growing environment through the humidification and air supply on mushroom growing beds. Results showed that appropriate size of nozzle is between 0.8~0.5ml/s for the humidification and higher than the 2.0ml/s for the watering. The optimum water supply pressure was regarded as between 1.0~2.0MPa and the uniform distribution of droplet on the bed showed on air flow speed of 14m/s. The prototype was equipped with twin nozzle with. the humidification nozzle of 0.85ml/s and watering nozzle of 5.0ml/s, and the air blast fan with the air speed of 10m/sec in each air spout. In the field test in a practical scale mushroom growing house, it was well operated dependant on the set desire by a electric control unit. The machine can be practically used as air blast watering and air blast humidification for oyster mushroom growing farms without manual.

  • PDF

Effect of starch nanoparticle on the quality characteristics of whipped cream (전분 나노입자 첨가가 휘핑크림 품질특성에 미치는 영향)

  • Shin, Hye-Young;Choi, Hee-Don;Hong, Jung Sun;Shin, Kyeong Won;Kim, Jong-Yea
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.423-426
    • /
    • 2020
  • This study was performed to investigate how the addition of starch nanoparticles prior to whipping could affect the quality characteristics and stability of full-fat dairy cream. Starch nanoparticles were prepared by dry heating under mildly acidic conditions and added to dairy cream as amount of 1, 3, and 5% (w/w). The whipped cream's storage stability, viscosity, overrun, and droplet size were investigated in combination with various starch nanoparticle contents. The storage stability and apparent viscosity increased in parallel with the increasing starch nanoparticle content compared to the control. The mean size and homogeneity of the droplets in the whipped cream increased with higher starch nanoparticle addition levels. Even though the whipped cream overrun was reduced by the addition of starch nanoparticles, the 1% addition level exhibited a similar overrun value as the control.