References
- Amiri A, Mousakhani-Ganjeh A, Torbati S, Ghaffarinejhad G, Esmaeilzadeh Kenari R. Impact of high-intensity ultrasound duration and intensity on the structural properties of whipped cream. Int. Dairy J. 78: 152-158 (2018) https://doi.org/10.1016/j.idairyj.2017.12.002
- Bruhn CM, Bruhn JC. Observations on the whipping characteristics of cream. J. Dairy Sci. 71: 857-862 (1988) https://doi.org/10.3168/jds.S0022-0302(88)79628-9
- Cho WG. A recent research trends for food emulsions using pickering stabilization of nano-particle. J. of Korean Oil Chemists' Soc. 29: 238-247 (2012)
- Choi HD, Hong JS, Pyo SM, Ko E, Shin HY, Kim JY. Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohyd. Polym. 239: 116241 (2020) https://doi.org/10.1016/j.carbpol.2020.116241
- Hipp AK, Storti G, Morbidelli M. Acoustic characterization of concentrated suspensions and emulsions. 1. Model analysis. Langmuir 18: 391-404 (2002) https://doi.org/10.1021/la015538c
- Jakubczyk E, Niranjan K. Transient development of whipped cream properties. J. Food Eng. 77: 79-83 (2006) https://doi.org/10.1016/j.jfoodeng.2005.06.046
- Li C, Li Y, Sun P, Yang C. Pickering emulsions stabilized by native starch granules. Colloid Surface A. 431: 142-149 (2013) https://doi.org/10.1016/j.colsurfa.2013.04.025
- McClements DJ. Food emulsions: principles, practice, and techniques, CRC Press, Boca Raton, FL, USA (2005)
- Miskeen S, Park EY, Kim JY. Controlled fragmentation of starch into nanoparticles using a dry heating treatment under mildly acidic conditions. Int. J. Biol. Macromol. 123: 810-816 (2019) https://doi.org/10.1016/j.ijbiomac.2018.11.072
- Nesaretnam K, Robertson N, Basiron Y, Macphie CS. Application of hydrogenated palm kernel oil and palm stearin in whipping cream. J. Sci. Food Agr. 61(4): 401-407 (1993) https://doi.org/10.1002/jsfa.2740610405
- Regand A, Goff HD. Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloid. 17: 95-102 (2003) https://doi.org/10.1016/S0268-005X(02)00042-5
- Shao P, Zhang H, Niu B, Jin W. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols. Int. J. Biol. Macromol. 118: 2032-2039 (2018) https://doi.org/10.1016/j.ijbiomac.2018.07.076
- Shim SY, Ahn J, Kwak HS. Functional properties of cholesterol-removed compound whipping cream by palm oil. Asian Austral. J. Anim. 17: 857-862 (2004) https://doi.org/10.5713/ajas.2004.857
- Stanley DW, Goff HD, Smith AK. Texture-structure relationships in foamed dairy emulsions. Food Res. Int. 29: 1-13 (1996) https://doi.org/10.1016/0963-9969(95)00063-1
- Wang C, He XW, Huang Q, Fu X, Liu S. Physicochemical properties and application of micronized cornstarch in low fat cream. J. Food Eng. 116(4): 881-888 (2013) https://doi.org/10.1016/j.jfoodeng.2013.01.025
- Xiao J, Li Y, Huang Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Sci. Tech. 55: 48-60 (2016) https://doi.org/10.1016/j.tifs.2016.05.010
- Ye A, Hemar Y, Singh H. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloid Surface B. 38: 1-9 (2004) https://doi.org/10.1016/j.colsurfb.2004.07.011
- Zhai K, Pei X, Wang C, Deng Y, Tan Y, Bai Y, Zhang B, Xu K, Wang P. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier. Int. J. Biol. Macromol., 131: 1032-1037 (2019) https://doi.org/10.1016/j.ijbiomac.2019.03.107
- Zhao QZ, Zhao MM, Yang B, Cui C. Effect of xanthan gum on the physical properties and textural characteristics of whipped cream. Food Chem., 116: 624-628 (2009) https://doi.org/10.1016/j.foodchem.2009.02.079