• 제목/요약/키워드: drop landing

검색결과 97건 처리시간 0.019초

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • 국제물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

양발 착지 시 성별에 따른 상해 경험이 하지관절의 운동역학적 변인에 미치는 영향 (The Effect of Gender Difference in Injury Experience on Biomechanical Variables of Lower Extremity during Two Leg Drop Landing)

  • 이성열;권문석
    • 한국응용과학기술학회지
    • /
    • 제36권2호
    • /
    • pp.424-433
    • /
    • 2019
  • 본 연구는 양발 착지 시 성별에 따른 상해 경험이 무릎과 엉덩관절의 움직임 및 수직 지면반력에 미치는 영향을 분석하는데 목적이 있었다. 20대 남성 20명(상해 경험 8명, 비상해 경험 12명), 여성 20명(상해 경험 11명, 비상해 경험 9명)을 연구대상자로 선정하였다. 높이 45cm 박스에서 양발 착지를 통해 얻어진 운동역학적 변인을 Two-way mixed ANOVA를 실시하였으며, bonferroni adjustment를 이용하여 사후검증 하였다(p<.05). 본 연구결과 상해를 경험한 여성 그룹은 무릎 관절의 외반 및 내측회전 그리고 엉덩관절의 굴곡 및 외측회전 운동을 증가시켜 최대 수직 지면반발력의 감소를 유도할 수 있었던 것으로 판단된다. 상해를 경험하지 않은 여성 그룹의 경우 최대 무릎 굴곡각도가 가장 작게 나타났을 뿐만 아니라 엉덩관절의 굴곡과 외측회전 각도에서 가장 적은 수치를 나타내었고 최대 수직 지면반발력은 가장 높게 나타났다. 반면, 상해를 경험하지 않은 여성 INE 그룹의 경우 IE 그룹에 비해 상대적으로 무릎과 엉덩관절을 활용하지 못함으로서 높은 수직 지면반발력을 나타내었고, 이는 상대적으로 상해 위험성에 많이 노출되어 있음을 의미한다. 따라서 성별에 따른 상해 경험이 무릎과 엉덩관절의 운동과 최대 수직 지면반발력의 크기에 요인들에 영향을 주는 요인들임을 알 수 있었다.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구 (Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper)

  • 현영오;황재업;황재혁;배재성;임경호;김두만;김태욱;박명호
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.315-320
    • /
    • 2010
  • 본 논문은 헬기용 주륜 착륙장치의 기본 성능 향상 뿐 만 아니라 Fail-Safe 성능 및 소모 전력량을 개선할 목적으로, 전자석에 영구자석을 장착한 하이브리드 MR댐퍼형의 반능동제어 착륙장치를 도입하였다. 영구자석 위치에 따른 비교연구와 자기장 해석을 통해 원하는 제어력이 발생하는 MR댐퍼를 설계하였고 착륙 거동 시 내력으로 발생되는 공기력과 감쇠력의 합을 특정 값에서 일정하게 유지시키는 개념의 하중제어기법을 제어기로 적용하였다. 하이브리드 MR댐퍼를 이용한 하중제어의 착륙장치에 대하여 구성한 ADAMS 모델을 기반으로 낙하 시뮬레이션을 수행하였고 착륙특성에 대한 성능평가로 성능 개선을 확인하였다.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석 (Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • 한국운동역학회지
    • /
    • 제33권3호
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

상륙 태풍에 의한 마산만 폭풍해일 변동성 분석 - 1. 극치 모의 태풍 시나리오의 결정 (Variation Analysis of Storm Surges in Masan Bay due to Typhoon Landing-1. Extreme Simulation Typhoon Scenario)

  • Han, Sungdae
    • 한국재난정보학회 논문집
    • /
    • 제11권4호
    • /
    • pp.493-505
    • /
    • 2015
  • 남해안에 상륙한 태풍 자료를 기초로 하여 분석한 결과, 태풍 이동방향의 분포는 Beta 확률밀도함수를 따르며, 태풍 눈에서의 기압저하는 Rayleigh 확률밀도함수를 따르는 것으로 판단되었다. 이를 바탕으로 6개 상륙 지점에 따라 가장 확률적으로 높은 태풍의 진로와 기압저하에 따른 태풍 매미급의 극치 태풍 모의 시나리오를 결정하였다. 모의된 태풍의 상륙지점에 따른 마산만에서의 폭풍해일 변동성이 후속 연구에서 수치 모의될 것이다.

MEMS 가속도계를 적용한 ELT 시스템 개발과 검증 (Development and Verification of ELT System Using the MEMS Accelerometer)

  • 이상철;이동규;강자영
    • 한국항공우주학회지
    • /
    • 제38권3호
    • /
    • pp.294-299
    • /
    • 2010
  • 비상위치송수신장치(ELT)는 항공기 추락 시 조난 신호를 송출하는 장비이다. 유용한 장비이지만 항공기 추락과 경착륙에 대한 오판으로 인하여 잘못된 조난신호를 송출하기도 한다. 이러한 문제점은 현재 사용되고 있는 기계식 G-스위치의 부정확성에 그 원인이 있다. ELT의 성능 개선을 위하여 기계식 G-스위치를 MEMS 가속도계로 대체한 ELT 시스템을 개발하였다. ELT 시스템은 가속도 정보 수집/분석 시스템과 추락 판단 프로그램, 추락 상황에서 위치 정보를 제공하기 위한 GPS 수신 시스템으로 구성되어 있다. 또한, ELT 시스템을 검증하기 위한 자유 낙하 실험대를 제작하였다. 자유 낙하 실험대는 추락과 경착륙에 해당하는 충격 가속도와 충격 유지 시간을 모사할 수 있도록 설계하였다. 자유 낙하 실험대를 이용하여 개발한 ELT 시스템이 정확히 작동함을 확인하였다.

착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향 (The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump)

  • 조준행
    • 한국운동역학회지
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.