• Title/Summary/Keyword: drones for construction sites

Search Result 16, Processing Time 0.022 seconds

A Low-Cost Approach for Path Programming of Terrestrial Drones on a Construction Site

  • Kim, Jeffrey;Craig, James
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.319-327
    • /
    • 2022
  • Robots for construction sites, although not deeply widespread, are finding applications in the duties of project monitoring, material movement, documentation, security, and simple repetitive construction-related tasks. A significant shortcoming in the use of robots is the complexity involved in programming and re-programming an automation routine. Robotic programming is not an expected skill set of the traditional construction industry professional. Therefore, this research seeks to deliver a low-cost approach toward re-programming that does not involve a programmer's skill set. The researchers in this study examined an approach toward programming a terrestrial-based drone so that it follows a taped path. By doing so, if an alternative path is required, programmers would not be needed to re-program any part of the automated routine. Changing the path of the drone simply requires removing the tape and placing a different path - ideally simplifying the process and quickly allowing practitioners to implement a new automated routine. Python programming scripts were used with a DJI Robomaster EP Core drone, and a terrain navigation assessment was conducted. The study examined the pass/fail rates for a series of trial run over different terrains. The analysis of this data along with video recording for each trial run allowed the researchers to conclude that the accuracy of the tape follow technique was predictable on each of the terrain surfaces. The accuracy and predictability inform a non-coding construction practitioner of the optimal placement of the taped path. This paper further presents limitations and suggestions for some possible extended research options for this study.

  • PDF

Feasibility Study of Fine Dust Removal Technology in Construction Site (건설현장 미세먼지 제거기술의 타당성 분석)

  • Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.120-121
    • /
    • 2019
  • The construction industry is known to be one of the representative industries that generate fine dust. Therefore, reducing the amount of fine dust generated in construction sites is very important for the overall fine dust management. Based on this, this study proposed the concept of fine dust measurement and removal technology combined with advanced technologies such as drones and IoT. The qualitative, quantitative and risk elimination effects that can be expected when applying the proposed technique are analyzed. We will verify the effectiveness of the proposed concept through system development and field application, and evaluate specific economic feasibility through cost analysis. The proposed concept will be validated through system development and field application and evaluated specific economics through cost analysis.

  • PDF

Example of Application of Drone Mapping System based on LiDAR to Highway Construction Site (드론 LiDAR에 기반한 매핑 시스템의 고속도로 건설 현장 적용 사례)

  • Seung-Min Shin;Oh-Soung Kwon;Chang-Woo Ban
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1325-1332
    • /
    • 2023
  • Recently, much research is being conducted based on point cloud data for the growth of innovations such as construction automation in the transportation field and virtual national space. This data is often measured through remote control in terrain that is difficult for humans to access using devices such as UAVs and UGVs. Drones, one of the UAVs, are mainly used to acquire point cloud data, but photogrammetry using a vision camera, which takes a lot of time to create a point cloud map, is difficult to apply in construction sites where the terrain changes periodically and surveying is difficult. In this paper, we developed a point cloud mapping system by adopting non-repetitive scanning LiDAR and attempted to confirm improvements through field application. For accuracy analysis, a point cloud map was created through a 2 minute 40 second flight and about 30 seconds of software post-processing on a terrain measuring 144.5 × 138.8 m. As a result of comparing the actual measured distance for structures with an average of 4 m, an average error of 4.3 cm was recorded, confirming that the performance was within the error range applicable to the field.

A Study on the Effectiveness of the 4th Industrial Technology Application for School Building Construction Work (학교건물 시공을 위한 4차 산업기술 적용의 효과성에 대한 연구)

  • Min, Kyung-Suk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.4
    • /
    • pp.78-87
    • /
    • 2020
  • This study proposed the basic data that contributes to inducing an effective construction plan through the application of the 4th industrial technology to construct a school building that can guarantee the five goals of construction management: cost, process, quality, safety, and environmental management. To this end, 3D printing, drones, robot automation, and augmented reality technologies that are highly usable in construction sites were identified for construction workers. As part of this, related literature and research data were investigated. The selected 4th industrial technology was investigated and analyzed on how it was used for cost, process, quality, safety, and environmental management in a detailed school construction process. As a result of the analysis, significant results were found for the application plan of the 4th industrial technology in school construction for cost, process, quality, safety, and environmental management.

A Study of the Construction of Comprehensive Flight Testing Infrastructure to Increase Aviation Safety (항공안전 증진을 위한 비행종합시험 인프라 구축 방안 연구)

  • Kim, Seung-Han;Kim, Gyou-Beom;Yim, Jae-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.147-153
    • /
    • 2020
  • As demand for drone test flight is rapidly increasing, it is difficult for Goheung Aviation Center alone to meet the test flight demand. Newly developed drones or modified existing aircraft carry potential flight risks due to unpredictable flight performance or poor pilot skill when performing test flights outside the test site. Therefore, it is necessary to ensure sufficient test flight space for the safety verification of manned and unmanned aircraft. Therefore, this study analyzed the status of domestic flight test site and chapter 5 of ICAO DOC 9184-AN / 902 Part 1 (Airport Planning Manual). And to build a comprehensive flight test infrastructure, the methodology for preliminary evaluation of candidate sites for flight test sites and a method for evaluating infrastructure test sites was presented.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.