• 제목/요약/키워드: drone detection

검색결과 186건 처리시간 0.053초

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제13권6호
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Efficient Drone Detection method using a Radio-Frequency (RF를 이용한 효과적인 드론 탐지 기법)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • 제12권4호
    • /
    • pp.26-33
    • /
    • 2017
  • A drone performs a mission through remote control or automatic control, which uses wireless communications technology. Recently the increasing use of drones, the drone signal RF detection is necessary. In this paper, we propose an efficient dron RF detection method through simulations considering Wi-Fi, Bluetooth and dedicated protocol dron communication method in ISM(Industry Science Medical) band.. After configuring an environment where a common terminal and a drone signal are mixed, a general terminal and a drone signal are distinguished from each other by using a RF characteristic according to a dron movement. The proposed drone RF detection method is the WRMD(Windowed RSSI Moving Detection) operation and the Doppler frequency identification method. The simulation environments consist to mixed for two signals and four signals. We analysis the performance to proposed drone RF detection technique thorough detection rate.

Research on the drone detection based on the radar (레이다 기반의 드론 탐지 기법 연구)

  • Moon, Minjung;Song, Kyungmin;Yu, Sujin;Sim, Hyunseok;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • 제12권2호
    • /
    • pp.99-103
    • /
    • 2017
  • Recently, acccording to price decline and miniaturization of drone, it is increased dramatically that drone usage in various category including military and private sectors. In accordance with popular usage, There is a increasing risk of safety accident, national security and public privacy problem. Hence there is a high demand for study and analysis applicable to the related technology and anti-drone method including drone detection and jamming. In general, it is extremely difficult to detect and recognize drones using conventional sensors. In this paper, we classify drone detection technology and Drone detection experiments are performed using CW RADAR to obtain and analyze micro-doppler pattern. This preliminary study aims to provide fundamental theory on radar drone detection and experimental test results such that in-depth anti-drone technology can be established in future.

Convolutional Neural Network-based Real-Time Drone Detection Algorithm (심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘)

  • Lee, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • 제12권4호
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • 제19권2호
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Implementation of GPU Acceleration of Object Detection Application with Drone Video (드론 영상 대상 물체 검출 어플리케이션의 GPU가속 구현)

  • Park, Si-Hyun;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • 제20권3호
    • /
    • pp.117-119
    • /
    • 2021
  • With the development of the industry, the use of drones in specific mission flight is being actively studied. These drones fly a specified path and perform repetitive tasks. if the drone system will detect objects in real time, the performance of these mission flight will increase. In this paper, we implement object detection system and mount GPU acceleration to maximize the efficiency of limited device resources with drone video using Tensorflow Lite which enables in-device inference from a mobile device and Mobile SDK of DJI, a drone manufacture. For performance comparison, the average processing time per frame was measured when object detection was performed using only the CPU and when object detection was performed using the CPU and GPU at the same time.

Deep Learning Based Drone Detection and Classification (딥러닝 기반 드론 검출 및 분류)

  • Yi, Keon Young;Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제68권2호
    • /
    • pp.359-363
    • /
    • 2019
  • As commercial drones have been widely used, concerns for collision accidents with people and invading secured properties are emerging. The detection of drone is a challenging problem. The deep learning based object detection techniques for detecting drones have been applied, but limited to the specific cases such as detection of drones from bird and/or background. We have tried not only detection of drones, but classification of different drones with an end-to-end model. YOLOv2 is used as an object detection model. In order to supplement insufficient data by shooting drones, data augmentation from collected images is executed. Also transfer learning from ImageNet for YOLOv2 darknet framework is performed. The experimental results for drone detection with average IoU and recall are compared and analysed.

Anti-Drone Technology for Drone Threat Response: Current Status and Future Directions

  • Jinwoo Jeong;Isaac Sim;Sangbom Yun;Junghyun Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권4호
    • /
    • pp.115-127
    • /
    • 2023
  • In this paper, we have undertaken a comprehensive investigation into the current state of anti-drone technology due to the increasing concerns and risks associated with the widespread use of drones. We carefully analyze anti-drone technology, dividing it into three crucial domains: detection, identification, and neutralization methods. This categorization enables us to delve into intricate technical details, highlighting the diverse techniques used to counter evolving drone threats. Additionally, we explore the legal and regulatory aspects of implementing anti-drone technology. Our research also envisions potential directions for advancing and evolving anti-drone tech to ensure its effectiveness in an ever-changing threat environment.

Forest Fire Detection System using Drone Streaming Images (드론 스트리밍 영상 이미지 분석을 통한 실시간 산불 탐지 시스템)

  • Yoosin Kim
    • Journal of Advanced Navigation Technology
    • /
    • 제27권5호
    • /
    • pp.685-689
    • /
    • 2023
  • The proposed system in the study aims to detect forest fires in real-time stream data received from the drone-camera. Recently, the number of wildfires has been increasing, and also the large scaled wildfires are frequent more and more. In order to prevent forest fire damage, many experiments using the drone camera and vision analysis are actively conducted, however there were many challenges, such as network speed, pre-processing, and model performance, to detect forest fires from real-time streaming data of the flying drone. Therefore, this study applied image data processing works to capture five good image frames for vision analysis from whole streaming data and then developed the object detection model based on YOLO_v2. As the result, the classification model performance of forest fire images reached upto 93% of accuracy, and the field test for the model verification detected the forest fire with about 70% accuracy.

Deeper SSD: Simultaneous Up-sampling and Down-sampling for Drone Detection

  • Sun, Han;Geng, Wen;Shen, Jiaquan;Liu, Ningzhong;Liang, Dong;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4795-4815
    • /
    • 2020
  • Drone detection can be considered as a specific sort of small object detection, which has always been a challenge because of its small size and few features. For improving the detection rate of drones, we design a Deeper SSD network, which uses large-scale input image and deeper convolutional network to obtain more features that benefit small object classification. At the same time, in order to improve object classification performance, we implemented the up-sampling modules to increase the number of features for the low-level feature map. In addition, in order to improve object location performance, we adopted the down-sampling modules so that the context information can be used by the high-level feature map directly. Our proposed Deeper SSD and its variants are successfully applied to the self-designed drone datasets. Our experiments demonstrate the effectiveness of the Deeper SSD and its variants, which are useful to small drone's detection and recognition. These proposed methods can also detect small and large objects simultaneously.