• Title/Summary/Keyword: driving time

Search Result 2,401, Processing Time 0.035 seconds

A Joystick Driving Control Algorithm with a Longitudinal Collision Avoidance Scheme for an Electric Vehicle

  • Won, Mooncheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1399-1410
    • /
    • 2003
  • In this paper, we develop a joystick manual driving algorithm for an electric vehicle called Cycab. Cycab is developed as a public transportation vehicle, which can be driven either by a manual joystick or an automated driving mode. The vehicle uses six motors for driving four wheels, and front/rear steerings. Cycab utilizes one industrial PC with a real time Linux kernel and four Motorola MPC555 micro controllers, and a CAN network for the communication among the five processors. The developed algorithm consists of two automatic vehicle speed control algorithms for normal and emergency situations that override the driver's joystick command and an open loop torque distribution algorithm for the traction motors. In this study, the algorithm is developed using SynDEx, which is a system level CAD software dedicated to rapid prototyping and optimizing the implementation of real-time embedded applications on distributed architectures. The experimental results verify the usefulness of the two automatic vehicle control algorithms.

Current Controlled X-Y Channel Driving White LED Backlight System for 46" LCD TV

  • Cho, Dae-Youn;Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woo;Yang, Byung-Choon;Jang, Tae-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1503-1506
    • /
    • 2008
  • A novel white-LED (light emitting diode) backlight system for 46"LCD TVs which involves the current controlled X-Y channel driving method is proposed in this paper. There are two problems related to the LED current in the conventional X-Y channel driving driven by a constant voltage source. To solve these problems, a real time current sensing system is applied to the conventional one and the time-division current sensing method is employed.

  • PDF

Development of a Real-Time Vehicle Dynamic Model for a Tracked Vehicle Driving Simulator

  • Lee, Ji-Young;Lee, Woon-Sung;Lee, Ji-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.2-115
    • /
    • 2002
  • A real-time vehicle simulation system is a key element of a driving simulator because accurate prediction of vehicle motion with respect to driver input is required to generate realistic visual, motion, sound and proprioceptive cues. In order to predict vehicle motion caused by various driving actions of the driver on board the simulator, the vehicle model should consist of complete subsystems. On this paper, a tracked vehicle dynamic model with high efficiency and effectiveness is introduced that has been implemented on a training driving simulator. The multi-body vehicle model is based on recursive formulation and has been automatically generated from a symbolic computation package develop...

  • PDF

Human Drivers' Driving Pattern Analysis and An Adaptive Cruise Control Strategy (운전자 주행 패턴 분석 및 차량의 순항제어 기법)

  • 문일기;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2004
  • This paper presents experimental results for human drivers' driving patterns and an Adaptive Cruise Control(ACC) strategy. Analyses have shown that female drivers' driving characteristic values such as time-gap and minimum clearance are larger than those of male drivers'. Human drivers tend to have more clearance margins at high speed than at low speed. At low speed, drivers are much more sensitive to the desired clearance than at high speed. A multi-vehicle detection method is presented to improve ride quality of an ACC. Simulation results have shown that the proposed ACC can provide superior performance compared to the ACC strategy which uses a single-vehicle detection method.

EV battery's real-time driving data acquisition and comparison by route (전기차 배터리의 실시간 주행 데이터 취득과 주행경로별 비교)

  • Yang, Seungmoo;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.489-490
    • /
    • 2018
  • As the number of electric vehicles (EV) increases, there is an increasing interest in the post-vehicle application of the EV batteries. For the second use application of EV batteries, the state of health (SOH) at the end of automotive service has to be evaluated differently from the automotive perspective. It will be helpful to consider the driving conditions of EVs in understanding the performance deterioration trend of the battery. In this paper, we acquired the battery status information in real time during driving and compared the characteristics by the driving routes. The SOH from the BMS can be rescaled to percentage ratio to give a more general idea about the performance degradation.

  • PDF

DESIGN AND EVALUATION OF INTELIGENT VEHICLE CRUISE CONTROL SYSTEMS USING A VEHICLE SIMULATOR

  • Han, D.H.;Yi, K.S.;Lee, J.K.;Kim, B.S.;Yi, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.377-383
    • /
    • 2006
  • This paper presents evaluation and comparisons of manual driving and driving with intelligent cruise control(ICC) systems. An intelligent vehicle cruise control strategy has been designed to achieve natural vehicle behavior of the controlled vehicle that would make human driver feel comfortable and therefore would increase driver acceptance. The evaluation and comparisons of the ICC and manual driving have been conducted using real-world vehicle driving data and an ICC vehicle simulator.

Comparisons of Traffic Collisions between Expressways and Rural Roads in Truck Drivers

  • Lee, Sangbok;Jeong, Byung Yong
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • Background: Truck driving is known as one of the occupations with the highest accident rate. This study investigates the characteristics of traffic collisions according to road types (expressway and rural road). Methods: Classifying 267 accidents into expressway and rural road, we analyzed them based on driver characteristics (age, working experience, size of employment), time characteristics (day of accident, time, weather), and accident characteristics (accident causes, accident locations, accident types, driving conditions). Results: When we compared the accidents by road conditions, no differences were found between the driver characteristics. However, from the accident characteristics, the injured person distributions were different by the road conditions. In particular, driving while drowsy is shown to be highly related with the accident characteristics. Conclusion: This study can be used as a guideline and a base line to develop a plan of action to prevent traffic accidents. It can also help to prepare formal regulations about a truck driver's vehicle maintenance and driving attitude for a precaution on road accidents.

Study on Characteristics of Write Discharge with Single Sustain Waveform in AC Plasma Display Panel (교류형 플라즈마 디스플레이에서 단일 유지 파형을 가지는 기입 방전의 특성의 연구 )

  • Byung-Gwon Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.56-61
    • /
    • 2023
  • The characteristics of write discharge were investigated when the conventional driving method with the unipolar sustain voltages, and the single sustain driving method applying the bipolar sustain voltage were applied in an AC plasma display. In the case of having a single sustain waveform, the strength of the write discharge is weakened compared to the conventional driving method during the address period, because the wall charge inside the panel is more dissipated by the lower scanning voltage. In the driving method with a single sustain waveform, the bias voltage of the other electrodes was changed to improve the write discharge characteristics. As a result, the intensity of the discharge was enhanced by 32% and the delay time was shortened by 60 ㎲.

Analysis of the Influence of Road·Traffic Conditions and Weather on the Take-over of a Conditional Autonomous Vehicle (도로·교통 조건 및 기상 상황이 부분 자율주행자동차의 제어권전환에 미치는 영향 분석)

  • Park, Sungho;Yun, YongWon;Ko, Hangeom;Jeong, Harim;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.235-249
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport established safety standards for Level 3 autonomous vehicles for the first time in the world in December 2019, and specified the safety standards for conditional autonomous driving systems. Accordingly, it is necessary to analyze the influence of various driving environments on take-over. In this study, using a driving simulator, we investigated how traffic conditions and weather conditions affect take-over time and stabilization time. The experimental procedure was conducted in the order of preliminary training, practice driving, and test driving, and the test driving was conducted by dividing into a traffic density and geometry experiment and a weather environment experiment. As a result of the experiment, it was analyzed that the traffic volume and weather environment did not affect the take-over time and take-over stabilization time, and only the curve radius affects take-over stabilization time.

Development of a Vehicle Driving Cycle in a Military Operational Area Based on the Driving Pattern (군 운용 지역에서 차량의 주행 패턴에 따른 주행모드 개발)

  • Choi, Nak-Won;Han, Dong-Sik;Cho, Seung-Wan;Cho, Sung-Lai;Yang, Jin-Saeng;Kim, Kwang-Suk;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.60-67
    • /
    • 2012
  • Most of a driving cycle is used to measure fuel consumption (FC) and emissions for a specified vehicle. A driving cycle was reflected geography and traffic characteristics for each country, also, driving pattern is affected these parameters such as vehicle dynamics, FC and emissions. Therefore, this study is an attempt to develop a driving cycle for military operational area. The proposed methodology the driving cycle using micro-trips extracted from real-world data. The methodology is that the driving cycle is constructed considering important parameters to be affected FC. Therefore, this approach is expected to be a better representation of heterogeneous traffic behavior. The driving cycle for the military operational area is constructed using the proposed methodology and is compared with real-world driving data. The running time and total distance of the final cycle is 1461 s, 13.10 km. The average velocity is 32.25 km/h and average grade is 0.43%. The Fuel economy in the final cycle is 5.93 km/l, as opposed to 6.10 km/l for real-world driving. There were about 3% differences in driving pattern between the final driving cycle and real-world driving.