• Title/Summary/Keyword: driving speed

Search Result 1,928, Processing Time 0.025 seconds

Lumped Track Modeling for Estimating Traction Force of Vecna BEAR Type Robot (Vecna BEAR 형 로봇의 견인력 추정을 위한 Lumped 궤도 모델링)

  • Kim, Tae Yun;Jung, Samuel;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.275-282
    • /
    • 2015
  • Recently, Vecna BEAR type robot to save injured individuals from inaccessible areas has been developed to minimize the loss of life. Because this robot is driven on rough terrain, there is a risk of rollover and vibration, which could impact the injured. In order to guarantee its stability, an algorithm is required that can estimate the speed limits for various environments in real time. Therefore, a dynamic model for real-time analysis is needed for this algorithm. Because the tracks used as the driving component of Vecna BEAR type robot consist of many parts, it is impossible to analyze the multibody tracks in real time. Thus, a lumped track model that satisfies the requirements of a short computation time and adequate accuracy is required. This study performed lumped track modeling, and the traction force was verified using RecurDyn, which is a dynamic commercial program.

Development of an Autonomous Vehicle: A1 (자율주행자동차 개발: A1)

  • Chu, Keon-Yup;Han, Jae-Hyun;Lee, Min-Chae;Kim, Dong-Chul;Jo, Ki-Chun;Oh, Dong-Eon;Yoon, E-Nae;Gwak, Myeong-Gi;Han, Kwang-Jin;Lee, Dong-Hwi;Choe, Byung-Do;Kim, Yang-Soo;Lee, Kang-Yoon;Huh, Kun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.146-154
    • /
    • 2011
  • This article describes the Autonomous Vehicle #1 (A1), which won the 2010 Autonomous Vehicle Competition (AVC) organized by Hyundai Kia automotive group. The A1 was developed for high speed and stable driving without human intervention. The autonomous system of A1 was developed based on in-vehicle networks, electronic control units, and embedded software. Novel environment perception and navigation algorithm were evaluated and validated through the AVC. In this paper, we presented the system and software architecture of A1.

Emission Factor and Fuel Economy Calculation Using Vehicle Inspection and Maintenance Program (자동차 환경검사에 의한 대기오염물질 배출계수 및 연비 산출)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-106
    • /
    • 2009
  • An objective of this study is to give practical information that could be used for calculating pollutant emission factors and fuel economy from Korean Inspection & Maintenance program, which has been using steady state acceleration simulation mode. Concentration results from I/M test is adequately converted to mass emission factors and fuel efficiency data, which have unit of g/km and km/L, respectively. Exhaust volume flow(EVF), which is for converting emission result from concentration to mass, is measured by tracer method in various vehicle speed - power condition. It is found that there is an apparent second order relationship between EVF and vehicle inertia weight. EVF is expressed in function of vehicle inertia weight in order to estimate EVF in I/M site without measuring device. Converted mass emission results from measured EVF and raw emission analyzer show a satisfactory agreement with those from conventional CVS-bag type measurement system. Mass emission factors and fuel efficiency from measured EVF and estimated EVF also show good agreement to each other. Considering that an I/M program has great advantages to recruit-based emission test in terms of the number of test vehicle, the information in this study can be used for developing an alternative procedure to collect more various data to establish national database of mobile emission factors and fuel economy, even though the driving cycle in I/M program is steady state cycle rather than transient cycle.

Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test (해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구)

  • Kim, Dong-Joon;Kim, Su-Rin;Choo, Yun-Wook;Kim, Dong-Soo;Lee, Man-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

A Study on the New Discharge Logic Device for the Plasma Display Panels (플라즈마 디스플레이 패널을 위한 새로운 방전 논리소자에 관한 연구)

  • 염정덕;정영철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • The plasma display panel with the electrode structure of new discharge AND gate was proposed and the driving system for experiment was developed. And discharge AND gate operation was verified. Discharge AND gate operated by the operation speed of 8${\mu}\textrm{s}$ and the operation margin of 20V. It was known to be able to control the discharge of the adjoining scan electrode accurately. Because this method uses the DC discharge, the control of the discharge can be facilitated compared with conventional discharge AND gate. Moreover, because the input discharge and the output discharge of AND gate are separate, the display discharge can be prevented from passing AND gate. Therefore it is possible to app1y to the large screen plasma display. And the decrease of contrast ratio does not occur because the scanning discharge does not influence the picture quality.

A Study of Intelligent Head Up Display System for Next Generation Vehicle (차세대 자동차를 위한 HUD 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • In this paper, the intelligent smart monitor system is implemented for the next generation vehicle. to mitigate the numerous effects of distractions within the vehicle, it is vital to put critical information where the driver can use it without affection focus on the road ahead. Audible alarms are useful supplements when used in conjunction with visual displays. But driving is an overwhelmingly visual task. To optimize a vehicle's active safety systems, more than just audible alarms are necessary. The driver needs a visual interface that focuses his or her attention on the road ahead. The most commonly viewed information in a vehicle is from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to intelligent integrated smart monitor system. Finally, in this paper, we analyze intelligent integrated smart monitor system for driver safety vehicles.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.

Reflector Matching Mechanism for Localization of Automatic guidance system (무인 이송장치의 위치측정을 위한 반사체의 매칭 기법)

  • Jung, Eun-Kook;Jung, Kyung-Hoon;Cho, Hyun-Hak;Kim, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1238-1244
    • /
    • 2011
  • This paper presents the matching method of reflectors for localization of laser navigation. The laser navigation is a device that measures distance and angle of reflector. The conventional major matching using the laser navigation is method that moves position of measured reflectors to position of installed reflectors and than rotate moved reflectors. However, it is difficult to use the industry because it has high computational complexity and high errors. To solve those problem, The proposed matching is method that create position of measured reflectors to assume that the position of installed reflectors is position of AGV and than rotate the position of installed reflectors. For experiment, we used AGV which was designed by ourselves, and compared positioning accuracy when AGV moves according to varying steering angle and driving speed.

The Design of a I/O Circuits for Driving and Monitoring of the Diesel Generator for Emergency (비상용 디젤 발전기 구동 및 모니터링을 위한 입출력 회로 설계)

  • Joo, Jae-Hun;Kim, Jin-Ae;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1491-1496
    • /
    • 2009
  • This paper presents an digital based input/output interface circuit for controlling and monitoring the Diesel Engine Generator for emergency. In order to monitor and control of the Emergency Diesel Engine Generator, controlling and monitoring circuits need 5 analog input channels, 2 pick-up coil measuring circuits, 10 digital input channels containing Broken Wire Detect function, and 7 relay control signal output channels. This system performs signal processing of input signal taking advantage of simple filter circuit, photo-coupler and comparator circuit at analog input parts, and output signals for main relay is designed acting by double control, so it prevents malfunction completely. And it improves accuracy of speed input signal by applying digital circuit that processes rick-up coil signal.