• Title/Summary/Keyword: driving scenario

Search Result 126, Processing Time 0.023 seconds

Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability (UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구)

  • Gyumin Kang;Kyungsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model (도시성장 시나리오와 CLUE-s 모형을 이용한 우리나라의 토지이용 변화 예측)

  • LEE, Yong-Gwan;CHO, Young-Hyun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.

Improved Crash Detection Algorithm for Vehicle Crash Detection

  • An, Byoungman;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.93-99
    • /
    • 2020
  • A majority of car crash is affected by careless driving that causes extensive economic and social costs, as well as injuries and fatalities. Thus, the research of precise crash detection systems is very significant issues in automotive safety. A lot of crash detection algorithms have been developed, but the coverage of these algorithms has been limited to few scenarios. Road scenes and situations need to be considered in order to expand the scope of a collision detection system to include a variety of collision modes. The proposed algorithm effectively handles the x, y, and z axes of the sensor, while considering time and suggests a method suitable for various real worlds. To reduce nuisance and false crash detection events, the algorithm discriminated between driving mode and parking mode. The performance of the suggested algorithm was evaluated under various scenarios, and it successfully discriminated between driving and parking modes, and it adjusted crash detection events depending on the real scenario. The proposed algorithm is expected to efficiently manage the space and lifespan of the storage device by allowing the vehicle's black box system to store only necessary crash event's videos.

Development of a RLS based Adaptive Sliding Mode Observer for Unknown Fault Reconstruction of Longitudinal Autonomous Driving (종방향 자율주행의 미지 고장 재건을 위한 순환 최소 자승 기반 적응형 슬라이딩 모드 관측기 개발)

  • Oh, Sechan;Song, Taejun;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • This paper presents a RLS based adaptive sliding mode observer (A-SMO) for unknown fault reconstruction in longitudinal autonomous driving. Securing the functional safety of autonomous vehicles from unexpected faults of sensors is essential for avoidance of fatal accidents. Because the magnitude and type of the faults cannot be known exactly, the RLS based A-SMO for unknown acceleration fault reconstruction has been designed with relationship function in this study. It is assumed that longitudinal acceleration of preceding vehicle can be obtained by using the V2V (Vehicle to Vehicle) communication. The kinematic model that represents relative relation between subject and preceding vehicles has been used for fault reconstruction. In order to reconstruct fault signal in acceleration, the magnitude of the injection term has been adjusted by adaptation rule designed based on MIT rule. The proposed A-SMO in this study was developed in Matlab/Simulink environment. Performance evaluation has been conducted using the commercial software (CarMaker) with car-following scenario and evaluation results show that maximum reconstruction error ratios exist within range of ±10%.

Integration of Dynamic Road Environmental Data for the Creation of Driving Simulator Scenarios (드라이빙 시뮬레이터 시나리오 개발을 위한 동적 도로환경 데이터 융합)

  • Gwon, Joonho;Jun, Yeonsoo;Yeom, Chunho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2022
  • With the development of technology, driving simulators have been used in various ways. In driving simulator experiments, scenario creation is essential to increase fidelity, achieve research aims, and provide an immersive experience to the driver. However, challenges remain when creating realistic scenarios, such as developing a database and the execution of scenarios in real-time. Therefore, to create realistic scenarios, it is necessary to acquire real-time data. This study intends to develop a method of acquiring real-time weather and traffic speed information for actual, specific roads. To this end, this study suggests the concatenator for dynamic data obtained from Arduino sensors and public open APIs. Field tests are then performed on actual roads to evaluate the performance of the proposed solution. Such results may give meaningful information for driving simulator studies and for creating realistic scenarios.

Analysis on the Effect of Vehicle Speed Change on the Vehicle Information Guide System for Pedestrian Safety (보행자 안전을 위한 차량정보안내시스템 도입에 따른 통행속도 변화에 미치는 영향 분석)

  • Kwang-Bok Jung;Yeong-YUL Kim;Jae-Yoon Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2023
  • This study conducted an effect evaluation before and after the installation of a vehicle information guidance system that provides drivers with information about vehicle speed and the presence or absence of pedestrians near pedestrian crossings. There are three types of scenarios: when no information is provided to the driver (S1), when only the vehicle driving speed is provided (S2), and when pedestrians are present on the pedestrian crossing and when both vehicle driving speeds are provided (S3). did. As a result of the survey, the speed reduction rate of the vehicle was found to be about 0.4~0.7km greater in S2 and S3 that provide information to the driver than in scenario S1. In addition, in the scenario S3, the speed reduction rate is 0.2km higher than that in the case where there are pedestrians near the pedestrian crossing, which further reduces the vehicle speed. Statistical analysis also showed that there was a difference in the speed reduction rate of the average vehicle for the three scenarios, and that the speed reduction rate was large in the presence of pedestrians.

A Study on Driver's Psychological Responses to VMS Traffic Information Using Driving Simulator (가상주행 실험을 통한 VMS 교통정보의 이용자 심리적 반응에 관한 연구)

  • Lim, Joon-Bum;Hong, Ji-Yeon;Lee, Soo-Beom;Jung, Sung-Hwa;Hwang, Jung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.20-29
    • /
    • 2010
  • The variable message sign(VMS) is a representative traffic information service medium which has the largest users and is provided and operated by a governmental agency. In this paper, we focused on psychological responses of individuals who use VMS traffic information in the light of the need for VMS to provide user-oriented service. A total of t재 scenarios were plotted to conduct our experiment on a virtual test track. A stress index analysis on VMS location, the first scenario, showed the lowest stress value at the point of 1.5 kilometers before the exit. A stress index analysis on the contents of VMS information (communication, time, and speed), the second scenario, showed the lowest stress value at time information.

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

Development of the VR Simulation System for the Study of Driver's Perceptive Response (운전자 인지반응 연구를 위한 VR 시뮬레이션 시스템 개발)

  • Jang, Suk;Kwon, Seong-Jin;Chun, Jee-Hoon;Cho, Ki-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.149-156
    • /
    • 2005
  • In this paper, the VR(Virtual Reality) simulation system is developed to analyze driver's perceptive response on the ASV(Advanced Safety Vehicle). The ASV is the vehicle of next generation equipped with various warning systems. For the purpose, the VR simulation system consists of VR database, vehicle dynamic model, graphic/sound system, and driving system. The VR database which generates 3D graphic and sound information is organized for the driving reality. Mathematical models of vehicle dynamic analysis are constructed to represent the dynamic behavior of a vehicle. The driving system and the graphic/sound system provide a driver with the operation of a vehicle and the feedback of a driving situation. Also, the real-time simulation algorithm synchronizes the vehicle dynamic model with the VR database. To check the validity of the developed system, a simple scenario is applied to investigate driver's perceptive response time and vehicle acceleration on an emergency situation. It is confirmed that the proposed system is useful and helpful to design the FVCWS(Forward Vehicle Collision Warning System).

The Effect of Interjection in Conversational Interaction with the AI Agent: In the Context of Self-Driving Car (인공지능 에이전트 대화형 인터랙션에서의 감탄사 효과: 자율주행 맥락에서)

  • Lee, Sooji;Seo, Jeeyoon;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.551-563
    • /
    • 2022
  • This study aims to identify the effect on the user experiences when the embodied agent in a self-driving car interacts with emotional expressions by using 'interjection'. An experimental study was designed with two conditions: the inclusion of injections in the agent's conversation feedbacks (with interjections vs. without interjections) and the type of conversation (task-oriented conversation vs. social-oriented conversation). The online experiment was conducted with the four video clips of conversation scenario treatments and measured intimacy, likability, trust, social presence, perceived anthropomorphism, and future intention to use. The result showed that when the agent used interjection, the main effect on social presence was found in both conversation types. When the agent did not use interjection in the task-oriented conversation, trust and future intention to use were higher than when the agent talked with emotional expressions. In the context of the conversation with the AI agent in a self-driving car, we found only the effect of adding emotional expression by using interjection on the enhancing social presence, but no effect on the other user experience factors.