• 제목/요약/키워드: driving efficiency

검색결과 1,170건 처리시간 0.032초

SRM의 최대 토크, 효율 및 최소 토크리플 운전을 위한 스위칭 각 (Switching Angle for Maximizing Torque, Efficiency and Minimizing Torque Ripple in SRM Drive)

  • 김현덕;차현록;김광헌;나석환;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.151-154
    • /
    • 1999
  • This paper presents a driving method of 3-phase 4-poles SRM(switched reluctance motor) drived by switching angle control. In this study, the switching angle is determined from approximated analysis and computer simulation by using MATLAB for high efficiency according to the speed and torque required by load, and then microcontroller controls the switching angle of asymmetrical inverter in SRM driver. Also, we experiment the maximum forque driving and maximum power driving by controlling switching angle available to electric vehicle.

  • PDF

송풍기용 단상 SRM의 구동특성 (Driving Characteristics of Single Phase Switched Reluctance Motor for Fan Application)

  • 김봉철;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.848-851
    • /
    • 2003
  • This paper proposes a new driving scheme for single-phase SRM. The driving scheme is very simple and inexpensive. By use of this scheme, simple power devices based on low switching losses enable to high efficiency SRM drive. Starting, One of the main problem in single-phase SRM is overcame by a new starting algorithm with one hall sensor and a parting magnet. The proposed single phase SRM has a high efficiency and robust drive characteristics compared to that of a universal motor.

  • PDF

Low Voltage Current Controlled Driving Method for AC PDP

  • Lee, Yang-Keun;Um, Jong-Sik;Kim, Joon-Yub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.207-210
    • /
    • 2002
  • This paper presents a new driving method that can drive AC PDPs with low voltage and controlled-current for the sustaining period. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146 V and that luminous efficiency of 1.33 lm/W can be achieved.

  • PDF

연료절감운전 패턴 연구 (A Study of Fuel Reduction Driving Pattern on Diesel Locomotives)

  • 손경소;김대식;김호순;김택성;박태기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1405-1411
    • /
    • 2011
  • It is very often for the experienced diesel locomotive drivers to identify the proper replacing time for the fuel adjustment tube only based on their experience. Because of that, sometimes the locomotive's fuel is burned out due to the unnecessary torque. Or sometimes, the locomotive does not operate with its accelerating performance because the fuel is not supplied at the appropriate moment. Meanwhile, recent typical auto vehicles provide drivers with the average fuel efficiency and the instant fuel efficiency in real-time. By providing the real time display mentioned above, it is one of the good examples that those drivers, who had driven their cars not properly and used a lot of fuel with their bad driving habits, obtain the efficient driving pattern by continuous educating effect. Similarly, if the diesel locomotive provides the train driver with the optimal driving pattern within a certain driving section, it will be effective for fuel saving. It is possible to make the most effective driving pattern by performing the repeated trial running especially for the railway because the track's operating routes, its grades, and etc are relatively precise. This research analyzes the result data which was obtained by many times trial running on the identical section after equipping the fuel use measuring device to a certain test vehicle, and confirms the fuel saving effect depending on the driving pattern along the test section. At the same time, the research to establish the optimal driving pattern was progressed.

  • PDF

On the Cell Structure and Driving Method for High Efficiency Plasma Display Panel

  • Lee, Ho-Jun;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Ji-Hoon;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1479-1482
    • /
    • 2006
  • Potentials and advantages of recently proposed raised bus electrode plasma display panel is discussed in terms of luminous efficiency, addressing speed. Detailed experimental and simulation results, which shows mechanisms of high efficiency driving mechanism, will also be given. Apart from the cell structure, we introduce new high efficiency driving method that can be applicable to conventional ac Plasma Display Panel.

  • PDF

DTG Big Data Analysis for Fuel Consumption Estimation

  • Cho, Wonhee;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.285-304
    • /
    • 2017
  • Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.

Y형 전류평형 트랜스포머를 이용한 고효율 LED 구동시스템 (High Efficiency LED Driving System using Y type Current Balancing Transformer)

  • 김진구;유진완;박종연
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.223-231
    • /
    • 2015
  • LEDs have been widely used in lighting displays, automobiles, and airplanes owing to their excellent light output characteristics and long lifespan. Though LEDs are manufactured under the same process, variations in impurity concentrations cause electrical deviation among LEDs. The resulting electrical deviation can not only reduce the life time of the LED but also cause non-uniform luminance of LEDs connected in parallel. LED driving circuit is required to solve these problems. In this paper, we propose a LED driving system using Y-type current balancing transformer to maximize the efficiency of the system by removing output stage Schottky diodes. Experimental results are presented to verify the performance of proposed LED driving system that is applied to 80 W LED modules.

자계 공진 방식의 무선전력전송 장치를 이용한 교류 전력 직접 인가에 의한 LED 조명기기 효율에 관한 연구 (A Study on the Efficiency of LED Lighting Applied by Direct AC Power Using Magnetic Resonance Wireless Power Transfer System)

  • 박정흠
    • 조명전기설비학회논문지
    • /
    • 제27권10호
    • /
    • pp.15-20
    • /
    • 2013
  • In this paper, wireless power transfer system using the magnetic resonance was designed and applied to LED lighting for implementation of wireless lighting. This lighting was made by the converted DC driving type and the direct AC driving type. In the former, transferred AC power was rectified into DC and regulated to the specified voltage value, which leads to produce the loss at the rectifying and regulating circuit. In the latter, wireless-transferred AC power was directly applied to LED, which get rid of the loss derived from the additional circuit. For the efficiency-comparison between the former and the latter, the power at each stage was measured when the same optical output radiated from LED lighting part. The result revealed that the direct AC driving type had 18% higher efficiency than the DC driving type and confirmed that LED lighting using magnetic resonance wireless power transfer system can be efficient by direct AC power supply. And the direct AC driving type had the simple circuit structure and the simple LED lighting formation, so this can leads to various application.

시뮬레이션 기반 자체 구동 롤러 컨베이어 물류시스템의 전력 효율 분석 (Simulation-based Analysis of Electric Power Consumption Efficiency for Self-Driving Roller Conveyor Systems)

  • 김영주;박희남;함원경;박상철
    • 한국시뮬레이션학회논문지
    • /
    • 제24권3호
    • /
    • pp.97-105
    • /
    • 2015
  • 본 논문은 시뮬레이션을 기반으로 자체 구동 롤러 컨베이어 물류시스템의 전력 효율을 분석하는 연구이다. 물류 시스템의 전력 효율 향상은 온실 가스 배출과 물류 비용을 감소시키는 이점을 가져온다. 자체 구동 롤러 컨베이어는 제품이 접근할 때에만 구동이 된다. 따라서 자체 구동 롤러 컨베이어 기반 시스템은 연속 구동 롤러 컨베이어 시스템에 비해 더 적은 전력을 소비한다. 본 논문에서는 DEVS(이산 사건 기반 시스템) 기반의 시뮬레이션 시스템을 설계하고 자체 구동 롤러와 연속 구동 롤러컨베이어 모델을 구축하였다. 설계된 시뮬레이션시스템과 컨베이어 모델의 검증과 확인을 위해 우리는 실험 환경에 대응하는 물류 모델을 모델링하고 모델과 실제 시스템간의 비교를 하였다. 본 연구의 주된 목적은 시뮬레이션 방법을 사용하여 자체구동 롤러 컨베이어 기반 물류 시스템의 전력 소비의 이점을 설명하는 것이다.

Comparative Study on Sinusoidal and Square Wave Driving Methods of EEFL (External Electrode Fluorescent Lamp) for LCD TV Backlight

  • Lee, Yeon-Jae;Oh, Won-Sik;Lee, Sung-Sae;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.325-328
    • /
    • 2005
  • EEFLs are mostly driven by sinusoidal wave driving method although EEFLs (External Electrode Fluorescent Lamps) are driven by both sinusoidal wave and square wave. The sinusoidal driving method reduces the cost and allows more power efficiency since this driving method can reduce the voltage stress of EEFL inverter switches and achieve the soft switching of the switches. And a transformer should be used in the inverter since the high voltage should be applied to the both ends of EEFL to turn on the lamp. However, the power loss mainly occurs at the transformer in the sinusoidal wave driving method. In order to remove the transformer which makes the power loss, a new method is presented. In this paper, the square wave is applied directly to the both ends of EEFL by a proposed two-stage inverter. Moreover, the luminance and power efficiency will be compared between the common sinusoidal wave driving method and square wave driving method.

  • PDF