• Title/Summary/Keyword: drinking groundwater

Search Result 237, Processing Time 0.037 seconds

Distribution of Organic and Inorganic Arsenic Species in Groundwater and Surface Water Around the Ulsan Mine (울산광산 주변지역 수계에서 유기 및 무기 비소 종 분포)

  • Kim, Youn-Tae;Woo, Nam-Chil;Yoon, Hye-On;Yoon, Cheol-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.689-697
    • /
    • 2006
  • Distribution and speciation of arsenic in water resources was investigated in the Ulsan mine area. In 62% of uoundwater samples from the mine area, total As concentrations exceeded 0.05 mg/l, the Korean Drinking Water Standard. As(V) was the major type in groundwater with minor As(III). Arsenic species appeared to be in transition stages following redox changes after exposure to the air through the monitoring wells. In areas around the mine, the mine and Cheongog spring appeared to be the sources of arsenic contamination of water resources. The spring showed 0.345 mg/1-As, as much as seven times of the Korean standard. Groundwater and stream samples showed As-concentrations greater than 0.05 mg/l in 30% and 33% samples, respectively, and 60 and 67% of samples exceeded 0.01 mg/l of WHO guideline, respectively. Again, As(V) was a dominant species, however, several samples had As(III) in appreciable levels. In one stream sample, organic species including DMA and AsB were detected in low levels, probably resulted from transformation or related biogeochemical processes.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

Analysis of Mass Screening Results Among Sampled Residents Around Camp Carroll, Gyeongsangbuk-do, Korea (캠프 캐럴 인근 선별 주민에 대한 건강검진 결과 분석)

  • Min, Young-Sun;Lim, Hyun-Sul;Lee, Kwan;Park, Sun Ae;Lee, Duk-Hee;Ju, Young-Su;Yang, Wonho;Kim, Geun-Bae;Yu, Seung Do
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.322-334
    • /
    • 2013
  • Objectives: This study describes the results of a mass screening and secondary questionnaire conducted among sampled residents around Camp Carroll. Methods: The subjects were sampled based on Waegwan groundwater ingestion history via a primary health questionnaire survey. However, the study population included voluntary participants and there were no grounds for disqualification. Among the 1,033 residents, excluding people living outside Waegwan, 844 subjects age 30 and over were analyzed. History of physician-diagnosed disease (including detailed history of cancer), eating habits, drinking and smoking histories were queried through questionnaires. Health screening consisted of a blood pressure check and blood test (complete blood cell, liver enzyme, lipid, blood sugar test, etc.). Results: The proportion of abnormal gamma-glutamyltransferase levels was higher in the groundwater ingesting female group than the non-ingesting female group. The odds ratios of the ingested '1 to 9 years' and '10 years and over' groups were 3.09 and 0.87, respectively. Proportions of hypertension in males, abnormal serum triglyceride levels in all and in females, and abnormal serum high density lipoprotein cholesterol levels in males were higher in the '10 to 29-year' resident group than in the '1 to 9 year' group. However, there were no significant trends according to length of residence. Conclusions: Physician-diagnosed prevalence and laboratory test results are not different by histories of Waegwan groundwater ingestion and by length of residence. Even if there are partially significant differences, they do not tend to follow increases of exposure amount and trends.

Geochemical Characteristics of Stream Sediments and Waters around the Pungam Landfill in Gwangju City, Korea (광주광역시 풍암매립지 주변 하상퇴적물과 물의 지구화학적 특성)

  • Park, Cheon-Young;Shim, In-Hyun;Bae, Jong-Phill;Ahn, Kun-Sang
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.290-302
    • /
    • 2003
  • This study was carried out to evaluate geochemical properties for stream sediments, surrounding soils, sludge collected in the drainage pipe of leachate and waters (stream water, groundwater, leachate) around the Pungam Landfill in Gwangju city. The stream sediments don't show any systematic trend of contents from upstream to downstream. The most enriched major element in the stream sediments is Fe (up to 7.08wt.% in GJ-23). Though stream sediment GJ-23 and GJ-34 were enriched by some heavy metals (eg. As, Cu, Zn), they do not constitute serious problems for environment consideration. The concentration of Fe (35.lwt.%) and As (38ppm) are significantly high in the GJ-8, which is soil specimen adjacent to leachate reservoir. The sludge (GJ-7) shows very high concentrations of As, Mn, Cr, Pb. In particular, the Cr content is 45.6 ppm, which exceeds the permitted level. The leachate is characterized by high TDS (2210-2470mg/L) and high electric conductivity (468, 530ms/cm), and enriched in both cation (Na, K) and anion (HCO$_3$). The leachate(PK-3) had a relatively high concentration of Cl, and is plotted in Na-Cl type on the Piper's diagram. The NO$_3$-N of the groundwater and stream water exceeded the permitted levels for drinking water.

Wastewater Reuse in Textile Industry: Case of Bandung, Indonesia (섬유공장폐수 재이용 사례: 인도네시아 반둥을 대상으로)

  • Chung, Youngkun;Lee, Mi-Young;Yang, Shi Chun;Kang, Seoktae
    • Journal of Appropriate Technology
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • Citarum river in West Java, Indonesia plays strategic roles for Jakarta metropolitan areas. Besides it provides major source of water supply such as domestics and drinking water including Jakarta, it also provides water for hundreds of industries through its cascade reservoirs. However, recently, Citarum river basin has been seriously suffering from water and groundwater pollution as well as the lowering-down of groundwater level due to the extreme use of water resources in dry season by domestic and industrial activities. This project objectives are design and installation of industrial wastewater treatment/recycle facilities to overcome the problem of water pollution and the lowering-down of groundwater level in Bandung. For these, cyclone type dissolved air flotation (DAF), CYFLOAT, was successfully installed as the appropriate technology for the target textile industry with 100 ton/day of capacity. The CYFLOAT system can remove the 96.8% of particulates, which are known as a critical factor to recycle the wastewater, within 40 min of residence time. Furthermore, The CYFLOAT system can reduce the operational cost and land use. The project was carried out in strong partnership with local institute including UNPAR, IBT, and PUSKIM for the sustainability of the technology to textile industry complex in Indonesia.

Determination of Horseradish Peroxidase (HRP) using an Enhanced Chemiluminescence Assay (증강 화학발광 기법을 이용한 horseradish peroxidase(HRP)의 검량)

  • Kim, Wongee;Kim, Keunhan;Lee, Seungmok
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.84-89
    • /
    • 2009
  • Our nation's water resources remain susceptible to contamination by phenolic agrichemicals. These compounds can be toxic to a variety of organisms including humans. Their disposal is restricted in many countries with strict limits for acceptable concentrations in drinking water. Enzyme-mediated in situ stabilization has been advocated as an approach for the treatment of phenolic compounds in soils and groundwater. This study reports the development of a new approach to quantify the activity of the HRP enzyme in aqueous systems. The method is based on the coupled processes of energy transfer and enhanced chemiluminescence using a luminol-$H_2O_2$-HRP system. In this study, the effects of solution pH, ionic strength and aqueous concentrations of HRP, $H_2O_2$ and enhancer were evaluated on the p-iodophenol-enhanced, HRP-catalyzed chemiluminescence reaction intensity in Tris-HCl buffer. All assay components were found to affect the maximum chemiluminescene intensity. The calibration curve for HRP showed the linear relationship with maximum light intensity.

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric;Cha, Jinmyung;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2358-2366
    • /
    • 2013
  • Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.

Optimal Design Study for Development of Washable Faucet Assembly Housing Including Filtration Filter (여과필터를 포함한 세척이 가능한 수도꼭지 어셈블리 하우징 개발을 위한 최적설계 연구)

  • Son, In-Soo;Bae, Sang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2021
  • In recent years, contamination of drinking water sources has emerged as a serious social problem, such as a large number of impurities in tap water or groundwater or the supply of suitable water due to rust of pipes. Although the government and public institutions are implementing various measures to protect water sources, they cannot improve water quality in a short period of time because of the enormous cost involved. Therefore, in recent years, preference has been given to a device that converts tap water, which is hard water, into soft water by installing a separate water softener at the faucet from which tap water is discharged. However, the existing filtration device has a problem that filtration performance is gradually lowered when impurities accumulate in the filter, requiring continuous filter replacement. In this study, the optimal design of the filter housing was performed to develop a water softener that can be washed when impurities accumulate on the filter inside the water softener connected to the faucet. For optimal design of the filter housing, fluid and fluid-structural interaction analysis were performed on the design pressure to determine the shape and thickness of the housing, and design review was performed through prototype.