• Title/Summary/Keyword: drilled pile

Search Result 164, Processing Time 0.021 seconds

Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network (인공신경망을 이용한 PHC 매입말뚝의 지지력 평가)

  • Lee, Song;Jang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.213-223
    • /
    • 2006
  • In this study, artificial neural network is applied to the evaluation of bearing capacity of the PHC auger-drilled piles at sites of domestic decomposed granite soils. For the verification of applicability of error back propagation neural network, a total of 168 data of in-situ test results for PHC auger-drilled plies are used. The results show that the estimation of error back propagation neural network provide a good matching with pile test results by training and these results show the confidence of utilizing the neural networks for evaluation of the bearing capacity of piles.

Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 무리말뚝의 보강효과 분석)

  • Chung, Moon-Kyung;Lee, Si-Hoon;Lee, Ju-Hyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.29-38
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the hiller concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. The results showed that the axial capacity of the composite pile was about 90% larger than that of the steel pipe pile while similar to that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was about 50% lager than that of the steel pile and about 22% larger than that of the concrete pile.

Side Resistance of Rock Socketed Drilled Shafts in Consideration of the Shaft Size Effects (크기효과를 고려한 암반에 근입된 현장타설말뚝의 주면마찰력)

  • Sagong Myung;Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.115-124
    • /
    • 2004
  • According to Sagong and Paik (2003), the side resistance of rock socketed drilled shafts is affected by rock quality, types, uniaxial compressive strength, and confining stress. Their approach based upon the Hoek-Brown criterion provides reasonable predictions of the side resistance. In this study, we propose an equation to calculate the side resistance considering size effects of the shafts and investigate the influence of drilled shaft diameter on the side resistance. A new method employs the modified Hoek-Brown criterion together with an empirical size effect of rock core. From the previous field tests, 12 pile load test results were collected and compared with prediction calculated from the equation proposed in this study. In a given condition, similar results between measurement and estimate are observed. From the parametric study on the GSI, confining stress, uniaxial compressive of intact rock and pile size, it is shown that uniaxial compressive strength is the most influential parameter on the side resistance. Though pile size shows the least influence on the resistance, the size effect is apparent as rock quality increases.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

A Study on the Development of Design Chart for Drilled Shaft Socketed into Weathered Zone Using DCPT (Driving Cone Penetrometer Test) (DCPT를 이용한 풍화대 소켓 현장타설말뚝의 설계도표 개발에 관한 연구)

  • Jung, Sung-Min;Kwon, Oh-Sung;Lee, Jong-Sung;Lee, Min-Hee;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • For the development of design chart for drilled shafts socketed into weathered zone, the 6 bi-directional pile load tests with load transfer measurements done in two in-situ sites were performed. Also, DCPTs were performed in each test point. Maximum unit skin frictions and maximum unit end bearing capacities from pile load test results were analyzed. Inter-relationships between DCPT's characteristics were also analyzed. In the soils, the inter-relationships of maximum unit skin friction and DCPT appeared so low. But in the weathered zones, inter-relationships between maximum unit skin friction / maximum unit end bearing capacity and DCPT were so high that the coefficient of correlation is over 0.70.

Development of Foundation of Urban Overpass for Bimodal Tram System (바이모달 트램 운행을 위한 도심지 고가구조물 기초형식 개발)

  • Kang, Tae-Sik;Bae, Eul-Ho;Park, Young-Kon;Yoon, Hee-Taek
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.194-198
    • /
    • 2008
  • The necessities of development of foundation having minimized occupying area and construction time are required for overpass in the downtown area by which bimodal tram will pass a crossway. We are studying a single column drilled pier foundation which is continuous from pier to pile foundation. Due to the increased resisting moment by reinforced steel which is ranged from the upper part of pile to lower part of column above ground, it can be possible to make a smaller pile-section and lessen the bar reinforcing. And for the excavation work is possible with smaller equipment, this foundation has a improved constructability and economical efficiency. This foundation needs smaller amount of concrete and has a small self-weight. It has an effect on improving resistance against earthquake due to improved ductility in addition to improved rigidity by interaction between concrete and steel.

  • PDF

Design of Drilled Shafts Foundation by LRFD in Incheon Bridge Project (인천대교 민자구간의 대구경 현장타설 말뚝기초의 LRFD 설계 적용 사례)

  • Kim, Jeong-Hwan;Lee, Hyun-Gun;Shin, Hyun-Yang;Youn, Man-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.551-561
    • /
    • 2006
  • Incheon bridge project is to construct total 12km long bridges on the sea consist of 800m span length cable stayed bridge, approach bridge and viaduct bridge based on LRFD design specification. To design pile foundations by RCD of each bridge unit, total 4 number of preliminary full scale pile load tests with Osterberg cell method were carried out on the piles for testing. The test load was planned to more than the expected design ultimate capacity and about 29,000tons maximum load was recorded. From the interpretation of test results, design parameters are evaluated and applied to the design. Preliminary pile load test plan and detailed execution of pile load tests are introduced and summarized. The resistance factors are presented for pile design of Incheon Bridge Project in LRFD considering variation of ground conditions and number of test piles.

  • PDF

A Study on the Skin Friction Characteristics of SIP and Numerical Model of the Interface Between SIP and Soils (SIP말뚝의 주면마찰특성 및 주면 경계요소의 수치모델에 관한 연구)

  • 천병식;임해식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.247-254
    • /
    • 2003
  • While the interests in the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP (Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests for the friction between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin friction characteristics of SIP were investigated thoroughly Also, hyperbolic model parameter fomulas which describe the friction behavior and the new non-linear unit skin friction capacity model with SM, SC soil were suggested.