• Title/Summary/Keyword: drift design

Search Result 591, Processing Time 0.035 seconds

Computational Aerodynamic Analysis of Airfoils for WIG(Wing-In-Ground-Effect) -Craft (지면효과익기 날개에 대한 전산 공력 해석)

  • Joh, Chang-Yeol;Kim, Yang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.37-46
    • /
    • 2004
  • Several notes on ground effects drawn from Navier-Stokes analyses and their aerodynamic interpretations were addressed here; For two-dimensional ground effect, the change of surface pressure due to image vortex, the venturi effect due to thickness and the primary inviscid flow phenomena of ground effect, and for three-dimensional ground effect, strengthened wing tip vortices, increased effective span and the outward drift of trailing vortices. Irodov's criteria were evaluated to investigate the static longitudinal stability of conventional NACA 6409 and DHMTU 8-30 airfoils. The analysis results demonstrated superior static longitudinal stability of DHMTU 8-30 airfoil. The DHMTU airfoil has quite lower value of lrodov's criterion than the conventional NACA airfoil, which require much smaller tail volume to stabilize the whole WIG-craft at its design stage.

Evaluation of EtherCAT Clock Synchronization in Distributed Control Systems (분산 제어 시스템을 위한 EtherCAT 시계 동기화의 성능 평가)

  • Kim, Woonggy;Sung, Minyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.785-797
    • /
    • 2014
  • Support for the precise time synchronization of EtherCAT, known as distributed clock (DC), enables the design of highly synchronized operations in distributed real-time systems. This study evaluates the performance of the EtherCAT DC through extensive experiments in a real automation system. We constructed an EtherCAT control system using Xenomai and IgH EtherCAT stack, and analyzed the clock deviation for different devices in the network. The results of the evaluation revealed that the accuracy of the synchronized clock is affected by several factors such as the number of slave devices, period of drift compensation, and type of system time base. In particular, we found that careful decision regarding the system time base is required because it has a fundamental effect on the master operation, which results in significantly different performance characteristics.

Seismic Performance of HyFo Beam with High Depth-to-SRC Column Connections (춤이 큰 하이브리드 합성보와 SRC기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Jeon, Yong Han;Cho, Seong Hyun;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.135-145
    • /
    • 2017
  • This study is a secondary study that is a cyclic seismic test of High depth hybrid composite beam and column connection after the primary bending strength test of a high depth Hybrid composite beam. Total of 3 seismic test specimens were prepared to cyclic test. The bracket and beam web spliced by high strength bolt and the bracket and beam upper flange was spliced by welding. Test results showed that the seismic strength was higher than the plastic moment($M_p$) in the positive negative moment section, the requirement of composite intermediate moment frame wes satisfied. Therefore, the requirement of intermediate moment frame can be secured by applying the details of connection of this study results.

The Synchronization Method of System Time Clock between Encoder and Decoder on MPEG-2 System Layer (MPEG-2 시스템계층의 엔코더와 디코더 간 System Time Clock 동기화 기법)

  • Seo Hee-Don;Kie Jae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1403-1410
    • /
    • 2005
  • The synchronization problem is directly related to the quality of service in multimedia communication and especially in real-time communication. In this study, we found the cause of clock fluctuation between encoder and decoder in MPEG-2 system layer was that the standard decoder design only considered a fixed time delay component. To solve it, we proposed Extended-SRTS algorithm, which uses STC as service clock by synchronizing transport stream. As the result, we can improve the effect of frequency-drift, time-varying-network-jitter and packing-jitter and so on And by virtue of this algorithm, we can make low the dependency of network clock, which makes easy to synchronize and connect transparently at the ends point, we expect the proposed algorithm can be widely applied to the field of real -time multimedia communications.

  • PDF

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Empirical Equations for Checking Validity of Access Hole Parameters for WUF-W Connections (WUF-W 접합부의 액세스 홀 형상변수 타당성 평가를 위한 경험식 제안)

  • Han, Sang Whan;Yoon, Yong;Kim, Y. Debbie
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • The welded unreinforced flange-welded web(WUF-W) connection is an all-welded moment connection, which is qualified for special moment frame(SMF) connections. However, previous studies reported that some WUF-W connections did not meet the drift requirement specified for SMF connections and such unexpected connection performance was resulted from weld access hole geometry. The objective of this study is to determine the permissible ranges of major access hole parameters such as access hole slope and the length of flat portion that lead to the satisfactory performance of WUF-W connections using Nonlinear finite element analyses are conducted. This study also proposes simple empirical equations to check the validity of access hole parameters to be selected in design process.

Seismic Performance Evaluations of RC Bearing Wall Systems with Coupling Beams - For Apartment Buildings in 1990s (연결보가 있는 철근콘크리트 내력벽시스템의 내진성능평가 -1990년대 공동주택을 중심으로-)

  • Lee, Young-Wook;Chae, J.-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2011
  • To investigate the performance of apartment buildings which were built in the 1990s and which have RC bearing wall systems with coupling beams, construction drawings of 13 buildings were collected and analyzed. To evaluate the seismic performance, FEMA 356 and FEMA 440 were selected as guidelines. For the demand curve, the seismic design spectrum in KBC 2009 is used. For each building, the performance points for life safety and the collapse prevention state are calculated. It was found that 9 out of 13 buildings (about 70%) showed damage more severe than the collapse prevention level at the performance point and more damage could be seen at the coupling beams than the walls. However, the story drift limit of FEMA 356 was satisfied for all buildings. Through the analysis of performance points, it was shown that the spectral acceleration has an inverse relationship with the natural period.

Sliding-DFT based multi-channel phase measurement FPGA system (Sliding-DFT를 이용한 다채널 위상 측정 FPGA 시스템)

  • Eo, Jin-Woo;Chang, Tae-Gyu
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.128-135
    • /
    • 2004
  • This paper proposes a phase measurement algorithm which is based on the recursive implementation of sliding-DFT. The algorithm is designed to have a robust behavior against the erroneous factors of frequency drift, additive noise, and twiddle factor approximation. The size of phase error caused by the finite wordlength implementation of DFT twiddle factors is shown significantly lower than that of magnitude error. The drastic reduction of the phase error is achieved by the exploitation of the quadruplet symmetry characteristics of the approximated twiddle factors in the complex plane. Four channel power-line phase measurement system is also designed and implemented based on the time-multiplexed sharing architecture of the proposed algorithm. The operation of the developed system is also verified by the experiment performed under the test environment implemented with the multi-channel function generator and the on-line interfaced host processor system. The proposed algorithm's features of phase measurement accuracy and its robustness against the finite wordlength effects can provide a significant impact especially for the ASIC or microprocessor based embedded system applications where the enhanced processing speed and implementation simplicity are crucial design considerations.

  • PDF

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

Design of Resonant-Type Magnetometer Using High Permeability Isotropic Magnetic Material (고투자율 등방성 자기물질을 이용한 공진형 마그네토미터의 설계)

  • Yim, Jeong-Bin;Sim, Yeong-Ho;Ahn, Yeong-Sub
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.133-139
    • /
    • 2005
  • Resonant-Type Magnetometer(RM) using high permeability isotropic magnetic material is designed to implement Smart Digital Compass. Theoretically, the inductance L of a coil, winding on the magnetic core, is proportion to the change of permeability $\mu(H)$ and, the change values of L can be obtain as the change of frequency by simple Schmitt Trigger circuit. By the use of integrated circuit switch, the RM can be designed with simple circuit and it can provide overcoming the drift by temperature and the variation of operating points in $\mu(H)$ curve. The facts that Metglas 2705M is an optimum magnetic material and ship's permanent magnetism can be obtain from measured values of RM are also known in this study.

  • PDF